OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3355–3359

Laser-induced wavefront distortion in optical materials: a general model

Luis C. Malacarne, Nelson G. C. Astrath, and Leandro S. Herculano  »View Author Affiliations


JOSA B, Vol. 29, Issue 12, pp. 3355-3359 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003355


View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wavefront distortion in optical components induced by thermal lensing may affect performance and stability of optical systems, such as high-power lasers, and is also the base of several photothermal techniques. This distortion is a result of complex photoelastic effects that characterize the degradation and the propagation of the beam. A simple analytical solution is obtained only for low absorbing materials, with the assumption that the stresses obey either thin-disk or long-rod type distributions. In a previous work, part of this limitation was overcome, in which a unified model was proposed for the optical path change for weakly absorbing materials, regardless of its thickness. In this work, we developed a generalized theoretical model for the optical path change that is related to the temperature profile in a relatively simple manner for all classes of absorbing optical materials. The modeling is based on the solution of the thermoelastic equation and provides time-dependent expressions for the temperature, surface displacement, and stresses. This generalized model could have a significant impact on designing laser systems and has direct application in photothermal techniques, which correlate optical path change to thermal, optical, and mechanical properties of solid materials.

© 2012 Optical Society of America

OCIS Codes
(350.5340) Other areas of optics : Photothermal effects
(350.6830) Other areas of optics : Thermal lensing

ToC Category:
Photothermal Effects

History
Original Manuscript: August 27, 2012
Manuscript Accepted: October 9, 2012
Published: November 20, 2012

Citation
Luis C. Malacarne, Nelson G. C. Astrath, and Leandro S. Herculano, "Laser-induced wavefront distortion in optical materials: a general model," J. Opt. Soc. Am. B 29, 3355-3359 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-12-3355


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Zhao, J. Degallaix, L. Ju, Y. Fan, D. G. Blair, B. J. J. Slagmolen, M. B. Gray, C. M. Mow Lowry, D. E. McClelland, D. J. Hosken, D. Mudge, A. Brooks, J. Munch, P. J. Veitch, M. A. Barton, and G. Billingsley, “Compensation of strong thermal lensing in high-optical-power Cavities,” Phys. Rev. Lett. 96, 231101 (2006). [CrossRef]
  2. W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling, “Heating bu optical absorption and the performance of interferometric gravitational-wave detectors,” Phys. Rev. A 44, 7022–7036(1991). [CrossRef]
  3. M. Sparks, “Optical distortion by heated windows in high-power laser systems,” J. Appl. Phys. 42, 5029–5046 (1971). [CrossRef]
  4. C. A. Klein, “Optical distortion coefficients of high-power laser windows,” Opt. Eng. 29, 343–350 (1990). [CrossRef]
  5. C. A. Klein, “Describing beam-aberration effects induced by laser-light transmitting components: a short account of Raytheon’s contribution,” Proc. SPIE 4376, 24–34 (2001). [CrossRef]
  6. C. A. Klein, “Analytical stress modeling of high-energy laser windows: application to fusion-cast calcium fluoride windows,” J. Appl. Phys. 98, 043103 (2005). [CrossRef]
  7. L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE 4679, 321–331 (2002). [CrossRef]
  8. Y. Peng, Z. Sheng, H. Zhang, and X. Fan, “Influence of thermal deformations of the output windows of high-power laser systems on beam characteristics,” Appl. Opt. 43, 6465–6472 (2004). [CrossRef]
  9. W. Koechner and M. Bass, Solid-State Lasers: A Graduate Text (Springer, 2003).
  10. J. Shen, M. L. Baesso, and R. D. Snook, “Three-dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time-resolved measurements of thin-film samples,” J. Appl. Phys. 75, 3738–3748 (1994). [CrossRef]
  11. N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20 K,” Phys. Rev. B 71, 214202 (2005). [CrossRef]
  12. N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, P. R. B. Pedreira, L. C. Malacarne, A. C. Bento, and M. L. Baesso, “Top-hat cw-laser-induced time-resolved modemismatched thermal lens spectroscopy for quantitative analysis of low-absorption materials,” Opt. Lett. 33, 1464–1466 (2008). [CrossRef]
  13. L. C. Malacarne, N. G. C. Astrath, and M. L. Baesso, “Unified theoretical model for calculating laser-induced wavefront distortion in optical materials,” J. Opt. Soc. Am. B 29, 1772–1777 (2012). [CrossRef]
  14. L. C. Malacarne, N. G. C. Astrath, G. V. B. Lukasievcz, E. K. Lenzi, M. L. Baesso, and S. E. Bialkowski, “Time-resolved thermal lens and thermal mirror spectroscopy with sample fluid heat coupling: a complete model for material characterization,” Appl. Spectrosc. 65, 99–104 (2011). [CrossRef]
  15. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153(2006). [CrossRef]
  16. W. Nowacki, Thermoelasticity (Pergamon, 1982), Vol. 3, p. 11.
  17. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon, 1959), Vol. 1, p. 78.
  18. C. Jacinto, S. L. Oliveira, L. A. O. Nunes, J. D. Myers, M. J. Myers, and T. Catunda, “Normalized-lifetime thermal-lens method for the determination of luminescence quantum efficiency and thermo-optical coefficients: Application to Nd3+-doped glasses,” Phys. Rev. B 73, 125107 (2006). [CrossRef]
  19. A. A. Kuzmin, D. E. Silin, A. A. Shaykin, I. E. Kozhevatov, and E. A. Khazanov, “Simple method of measurement of phase distortions in laser amplifiers,” J. Opt. Soc. Am. B 29, 1152–1156 (2012). [CrossRef]
  20. N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, “Time-resolved thermal mirror for nanoscale surface displacement detection in low absorbing solids,” Appl. Phys. Lett. 91, 191908 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited