OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3367–3370

Tunable acoustic bursts for customized tapered fiber Bragg structures

Carlos A. F. Marques, Roberson A. Oliveira, Alexandre A. P. Pohl, and Rogério N. Nogueira  »View Author Affiliations

JOSA B, Vol. 29, Issue 12, pp. 3367-3370 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (797 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The inscription of customized fiber Bragg structures under acoustic excitation is proposed and demonstrated. By setting the proper acoustic excitation function, the desired spectrum of the grating can be achieved. In this paper, the effect of applying a burst acoustic wave during the process of Bragg grating inscription using the direct writing method through a phase mask is investigated. Among all the characteristics that can be changed due to a periodic defect insertion in the uniform Bragg structure, the control of phase is used to demonstrate this assertion. The results of numerical simulations are shown to be in excellent agreement with experiments. It can be further extended to generate multiple phase shifts in optical fiber and/or waveguides, if the defects are inserted at different positions, as is shown.

© 2012 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(220.0220) Optical design and fabrication : Optical design and fabrication
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 23, 2012
Revised Manuscript: October 19, 2012
Manuscript Accepted: October 23, 2012
Published: November 21, 2012

Carlos A. F. Marques, Roberson A. Oliveira, Alexandre A. P. Pohl, and Rogério N. Nogueira, "Tunable acoustic bursts for customized tapered fiber Bragg structures," J. Opt. Soc. Am. B 29, 3367-3370 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. O. Hill, and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276(1997). [CrossRef]
  2. J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19, 2101–2103 (1994). [CrossRef]
  3. G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB Erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010). [CrossRef]
  4. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994). [CrossRef]
  5. P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Phase encoding and decoding of short pulses at 10  Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 154–156 (2001). [CrossRef]
  6. P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “A comparative study of the performance of seven and 63-chip optical code division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001). [CrossRef]
  7. W. H. Loh, F. Q. Zhou, and J. J. Pan, “Novel designs for sampled grating based multiplexers-demultiplexers,” Opt. Lett. 24, 1457–1459 (1999). [CrossRef]
  8. J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV postprocessing,” Electron. Lett. 30, 1344–1345 (1994). [CrossRef]
  9. M. Li, X. Chen, T. Fuji, Y. Kudo, H. Li, and Y. Painchaud, “Multi-wavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett. 34, 1717–1719 (2009).
  10. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellete, “Long period superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994). [CrossRef]
  11. R. A. Oliveira, K. Cook, J. Canning, and A. A. P. Pohl, “Bragg grating writing in acoustically excited optical fiber,” Appl. Phys. Lett. 97, 041101 (2010). [CrossRef]
  12. R. A. Oliveira, C. A. F. Marques, K. Cook, J. Canning, R. N. Nogueira, and A. A. P. Pohl, “Complex Bragg grating writing using direct modulation of the optical fibre with flexural waves,” Appl. Phys. Lett. 99, 161111 (2011). [CrossRef]
  13. J. Canning, H.-J. Deyerl, and M. Kristensen, “Precision phase-shifting applied to fibre Bragg gratings,” Opt. Commun. 244, 187–191 (2005). [CrossRef]
  14. M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17, 552–554 (2005). [CrossRef]
  15. R. A. Oliveira, P. T. Neves, J. T. Pereira, J. Canning, and A. Pohl, “Vibration mode analysis of a silica horn–fiber Bragg grating device,” Opt. Commun. 283, 1296–1302 (2010). [CrossRef]
  16. F. Ghiringhelli, C. Alegria, and M. N. Zervas, “Effect of phase shift perturbations and complex local time delay in fiber Bragg gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series (Optical Society of America, 2001), paper BWA3.
  17. J. Y. Lee, H.-W. Lee, and J. W. Hahn, “Complex traversal time for optical pulse transmission in a Fabry–Perot cavity,” J. Opt. Soc. Am. B 17, 401–406 (2000). [CrossRef]
  18. C. A. F. Marques, R. A. Oliveira, A. A. P. Pohl, J. Canning, and R. N. Nogueira, “Dynamic control of a phase-shifted FBG through acousto-optic modulation,” Opt. Commun. 284, 1228–1231(2011). [CrossRef]
  19. R. A. Oliveira, P. T. Neves, J. T. Pereira, and A. A. P. Pohl, “Numerical approach for designing a Bragg grating acousto-optic modulator using the finite element and the transfer matrix methods,” Opt. Commun. 281, 4899–4905 (2008). [CrossRef]
  20. J. Palací, P. Pérez-Millán, G. E. Villanueva, J. L. Cruz, M. V. Andrés, J. Martí, and B. Vidal, “Tunable photonic microwave filter with single bandpass based on a phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 22, 1467–1469 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited