OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3371–3376

Optical propagation properties in a quantum dot–DNA coupling system

Yang Li and Ka-Di Zhu  »View Author Affiliations


JOSA B, Vol. 29, Issue 12, pp. 3371-3376 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003371


View Full Text Article

Enhanced HTML    Acrobat PDF (512 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate the slow- and fast-light phenomena caused by the coupling between peptide quantum dot (QD) and DNA molecules with the presence of strong pump light and weak signal light simultaneously. In this QD–DNA system, significant changes of the velocity of signal light can be observed when pump-exciton detuning and signal-exciton detuning are adjusted properly. Slow and fast signal light with little absorption can be obtained by adjusting the pump intensity when the pump field is off-resonant. It can be shown clearly that these phenomena cannot occur without the QD–DNA coupling. The scheme proposed here will lead people to know more about the optical behaviors of the QD–DNA system with the currently popular pump-probe technique.

© 2012 Optical Society of America

OCIS Codes
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Quantum Optics

History
Original Manuscript: August 8, 2012
Revised Manuscript: October 5, 2012
Manuscript Accepted: October 25, 2012
Published: November 22, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Yang Li and Ka-Di Zhu, "Optical propagation properties in a quantum dot–DNA coupling system," J. Opt. Soc. Am. B 29, 3371-3376 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-12-3371


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. J. Finkelstein, M. L. Visnapuu, and E. C. Greene, “Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase,” Nature 468, 983–987 (2010). [CrossRef]
  2. A. Kuzuya, Y. Sakai, T. Yamazaki, Y. Xu, and M. Komiyama, “Nanomechanical DNA origami single-molecule beacons directly imaged by atomic force microscopy,” Nat. Commun. 2, 449–457 (2011). [CrossRef]
  3. P. E. Boukany, O. Hemminger, S. Q. Wang, and L. J. Lee, “Molecular imaging of slip in entangled DNA solution,” Phys. Rev. Lett. 105, 027802 (2010). [CrossRef]
  4. K. Kamiya and S. Okada, “Energetics and electronic structure of encapsulated single-stranded DNA in carbon nanotubes,” Phys. Rev. B 83, 155444 (2011). [CrossRef]
  5. V. Cherepinsky, G. Hashmi, and B. Mishra, “Competitive hybridization models,” Phys. Rev. E 82, 051914 (2010). [CrossRef]
  6. G. Tikhomirov, S. Hoogland, P. E. Lee, A. Fischer, E. H. Sargent, and S. O. Kelley, “DNA-based programming of quantum dot valency, self-assembly and luminescence,” Nat. Nanotechnol. 6, 485–490 (2011). [CrossRef]
  7. A. Fu, W. W. Gu, C. Larabell, and A. P. Alivisatos, “Semiconductor nanocrystals for biological imaging,” Curr. Opin. Neurobiol. 15, 568–575 (2005). [CrossRef]
  8. X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherence optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007). [CrossRef]
  9. X. D. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101, 227401 (2008). [CrossRef]
  10. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging labelling and sensing,” Nat. Mater. 4, 435–446 (2005). [CrossRef]
  11. I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2, 630–638 (2003). [CrossRef]
  12. X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004). [CrossRef]
  13. W. B. Cai and X. Y. Chen, “Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging,” Nat. Protocol 3, 89–96 (2008). [CrossRef]
  14. N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009). [CrossRef]
  15. N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010). [CrossRef]
  16. J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nanoscale Res. Lett. 7, 1–7 (2012). [CrossRef]
  17. S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef]
  18. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208(2011). [CrossRef]
  19. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011). [CrossRef]
  20. J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum dot system,” Appl. Phys. Lett. 94, 249903 (2009). [CrossRef]
  21. W. He, J. J. Li, and K. D. Zhu, “Coupling-rate determination based on radiationpressure-inducd normal mode splitting in cavity optomechanical system,” Opt. Lett. 35, 339–341 (2010). [CrossRef]
  22. L. L. Van Zandt, “Resonant microwave absorption by dissolved DNA,” Phys. Rev. Lett. 57, 2085–2087 (1986). [CrossRef]
  23. B. H. Dorfman, “The effects of viscous water on the normal mode vibrations of DNA,” Dissert Abstr. Int. 45, 2213–2219 (1984).
  24. G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Resonant microwave absorption of selected DNA molecules,” Phys. Rev. Lett. 53, 1284–1287 (1984). [CrossRef]
  25. G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985). [CrossRef]
  26. B. H. Dorfman and L. L. Van Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983). [CrossRef]
  27. C. W. Gardiner, and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phys. Rev. A 61, 033601 (2000). [CrossRef]
  28. G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phys. Rev. A 50, 5256–5263 (1994). [CrossRef]
  29. V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63, 023812 (2001). [CrossRef]
  30. R. W. Boyd, Nonlinear Optics (Amsterdam, 2008).
  31. J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995). [CrossRef]
  32. G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985). [CrossRef]
  33. C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008). [CrossRef]
  34. R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005). [CrossRef]
  35. B. K. Adai, “Vibrational resonances in biological systems at microwave,” Biophys. J. 82, 1147–1152 (2002). [CrossRef]
  36. M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007). [CrossRef]
  37. Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012). [CrossRef]
  38. D. J. Zhou, L. M. Ying, X. Hong, E. A. Hall, C. Abell, and D. Klenerman, “A compact functional quantum dot-DNA conjugate: preparation, hybridization, and specific label-free DNA detection,” Langmuir 24, 1659–1664 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited