OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3377–3385

Enhanced optical transmission through asymmetric nanostructured gold films

Lina Shi, Hailiang Li, Yuchan Du, and Changqing Xie  »View Author Affiliations


JOSA B, Vol. 29, Issue 12, pp. 3377-3385 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003377


View Full Text Article

Enhanced HTML    Acrobat PDF (995 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate optical properties of a gold structure comprising a two-dimensional array of gold nanoblocks placed on top of a thin gold film. We observe enhanced transmission through asymmetric nanostructured gold films, which can be attributed to the surface plasmon (SP) mode at the air-gold interface leaking to the substrate when the substrate index is larger than the superstrate index. When the substrate and superstrate are the same dielectric, the SPs at both superstrate-gold and gold-substrate interfaces strongly interact with each other and even and odd SPs are then excited. In addition, we investigate effects of oblique incidence and electronic interband transition on SP resonances. Our results provide a guideline for engineering novel devices with enhanced transmission based on nanostructures.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(310.6860) Thin films : Thin films, optical properties
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: August 30, 2012
Manuscript Accepted: October 5, 2012
Published: November 22, 2012

Citation
Lina Shi, Hailiang Li, Yuchan Du, and Changqing Xie, "Enhanced optical transmission through asymmetric nanostructured gold films," J. Opt. Soc. Am. B 29, 3377-3385 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-12-3377


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007). [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  3. F. J. García-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  4. J. Beermann, T. Sndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011). [CrossRef]
  5. W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).
  6. W.-C. Liu and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B 65, 155423 (2002). [CrossRef]
  7. U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999). [CrossRef]
  8. I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25, 595–597 (2000). [CrossRef]
  9. A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Transmission of light through thin silver films via surface plasmon-polaritons,” Opt. Express 12, 5881–5886 (2004). [CrossRef]
  10. D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69, 113405 (2004). [CrossRef]
  11. D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, “Analysis of the Bloch mode spectra of surface polaritonic crystals in the weak and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses,” Opt. Express 12, 3652–3663 (2004). [CrossRef]
  12. S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: the role of cross-coupled surface plasmon polaritons,” Phys. Rev. B 69, 245418 (2004). [CrossRef]
  13. I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004). [CrossRef]
  14. M. M. Dvoynenko, I. I. Samoylenko, and J.-K. Wang, “Suppressed light transmission through corrugated metal films at normal incidence,” J. Opt. Soc. Am. A 23, 2315–2319 (2006). [CrossRef]
  15. H. Schweizer, L. Fu, H. Gräeldinger, H. Guo, N. Liu, S. Kaiser, and H. Giessen, “Negative permeability around 630 nm in nanofabricated meander metamaterials,” Phys. Status Solidi. A 204, 3886–3900 (2007). [CrossRef]
  16. L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26, B111–B119 (2009). [CrossRef]
  17. P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19, 3627–3636 (2011). [CrossRef]
  18. A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003). [CrossRef]
  19. A. V. Kats and A. Y. Nikitin, “Analytical treatment of anomalous transparency of a modulated metal film due to surface plasmon-polariton excitation,” Phys. Rev. B 70, 235412 (2004). [CrossRef]
  20. N. Bonod, S. Enoch, L. Li, E. Popov, and M. Nevière, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482–490 (2003). [CrossRef]
  21. B. Bai, L. Li, and L. Zeng, “Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes” Opt. Lett. 30, 2360–2362(2005). [CrossRef]
  22. Y. Jourlin, S. Tonchev, A. V. Tishchenko, C. Pedri, C. Veillas, O. Parriaux, A. Last, and Y. Lacroute, “Spatially and polarization resolved plasmon mediated transmission through continuous metal films,” Opt. Express 17, 12155–12166 (2009). [CrossRef]
  23. S. Y. Chuang, H. L. Chen, S. S. Kuo, Y. H. Lai, and C. C. Lee, “Using direct nanoimprinting to study extraordinary transmission in textured metal films,” Opt. Express 16, 2415–2422 (2008). [CrossRef]
  24. H. L. Chen, S. Y. Chuang, W. H. Lee, S. S. Kuo, W. F. Su, S. L. Ku, and Y. F. Chou, “Extraordinary transmittance in three-dimensional crater, pyramid, and hole-array structures prepared through reversal imprinting of metal films,” Opt. Express 17, 1636–1645 (2009). [CrossRef]
  25. S. Xiao and M. Qiu, “Theoretical study of the transmission properties of a metallic film with surface corrugations,” J. Opt. A: Pure Appl. Opt. 9, 348–351 (2007). [CrossRef]
  26. N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75, 235426 (2007). [CrossRef]
  27. P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates,” Appl. Surf. Sci. 254, 794–798 (2007). [CrossRef]
  28. N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18, 305703 (2007). [CrossRef]
  29. J. Beermann, S. M. Novikov, T. Søndergaard, J. Rafaelsen, K. Pedersen, and S. I. Bozhevolnyi, “Localized field enhancements in two-dimensional V-groove metal arrays,” J. Opt. Soc. Am. B 28, 372–378 (2011). [CrossRef]
  30. J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Phys. Status Solidi C 2, 3983–3987 (2005). [CrossRef]
  31. A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007). [CrossRef]
  32. A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A: Pure Appl. Opt. 9, S366–S371(2007). [CrossRef]
  33. G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008). [CrossRef]
  34. L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092–3094 (2007). [CrossRef]
  35. L. Shi, A. Kabashin, and M. Skorobogatiy, “Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: comparison of the near and far field phase detection strategies,” Sens. Actuators B 143, 76–86 (2009). [CrossRef]
  36. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66, 245407 (2002). [CrossRef]
  37. N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Gold particle interaction in regular arrays probed by surface enhanced Raman scattering,” J. Chem. Phys. 120, 7141–7146 (2004). [CrossRef]
  38. J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman imaging: periodic arrays and individual metal nanoparticles,” Opt. Express 17, 12698–12705(2009). [CrossRef]
  39. A. Hohenau and J. R. Krenn, “Plasmonic modes of gold nano-particle arrays on thin gold films,” Phys. Status Solidi RRL 4, 256–258 (2010). [CrossRef]
  40. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005). [CrossRef]
  41. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005). [CrossRef]
  42. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 013531 (2005). [CrossRef]
  43. S. A. Maiera and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  44. R. D. Kekatpure, A. C. Hryciw, E. S. Barnard, and M. L. Brongersma, “Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator,” Opt. Express 17, 24112–24129 (2009). [CrossRef]
  45. Lumerical, “FDTD solution online help,” http://www.lumerical.com/ .
  46. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  47. Z. Wang, Z. Cai, Q. Chen, and L. Li, “Optical properties of metal-dielectric multilayers in the near UV region,” Vacuum 80, 438C443 (2006). [CrossRef]
  48. A. Pinchuk, G. Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139(2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited