OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3393–3397

Nondestructive method to measure coupling and propagation losses in optical guided structures

Thanh-Nam Nguyen, Kevin Lengle, Monique Thual, Philippe Rochard, Mathilde Gay, Laurent Bramerie, Stefania Malaguti, Gaetano Bellanca, Sy Dat Le, and Thierry Chartier  »View Author Affiliations

JOSA B, Vol. 29, Issue 12, pp. 3393-3397 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (244 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a nondestructive method for loss measurement in optical guided structures. In the proposed approach, the device under test does not require connectors at its ends, thus making this technique available for both optical fibers and integrated optical waveguides. The loss measurement is feasible over a broad range, from low ( 0.2 dB / km ) to high (of the order of 1 dB / mm ) loss values. This method is validated through measurements performed on a microstructured holey fiber and on a photonic-crystal waveguide. The obtained results are in good agreement with theoretical calculations and measurements obtained by other approaches.

© 2012 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(120.3940) Instrumentation, measurement, and metrology : Metrology
(130.2790) Integrated optics : Guided waves

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 11, 2012
Revised Manuscript: October 16, 2012
Manuscript Accepted: October 31, 2012
Published: November 27, 2012

Thanh-Nam Nguyen, Kevin Lengle, Monique Thual, Philippe Rochard, Mathilde Gay, Laurent Bramerie, Stefania Malaguti, Gaetano Bellanca, Sy Dat Le, and Thierry Chartier, "Nondestructive method to measure coupling and propagation losses in optical guided structures," J. Opt. Soc. Am. B 29, 3393-3397 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Fiber Optic Communication Systems, 3rd ed. (Wiley, 2002).
  2. R. Hui and M. O’Sullivan, Optical Fiber Measurement (Elsevier Academic, 2009).
  3. M. Tachikura, “Internal loss measurement technique for optical devices equipped with fiber connectors at both ends,” Appl. Opt. 34, 8056–8057 (1995). [CrossRef]
  4. R. G. Hunsperger, in Integrated Optics: Theory and Technology, 3rd ed. (Springer Verlag, New York, 1991).
  5. H. P. Weber, F. A. Dunn, and W. N. Leibolt, “Loss measurements in thin film optical waveguides,” Appl. Opt. 12, 755–757 (1973). [CrossRef]
  6. Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Observation of wave propagation in integrated optical circuits,” Appl. Opt. 25, 3405–3408 (1986). [CrossRef]
  7. R. K. Hickemell, D. R. Larson, R. J. Phelan, and L. E. Larson, “Waveguide loss measurement using photothermal deflection,” Appl. Opt. 27, 2636–2638 (1988). [CrossRef]
  8. R. Arsenault, D. Gregoris, S. Woolven, and V. M. Ristic, “Waveguide propagation-loss measurement technique,” Opt. Lett. 12, 1047–1049 (1987). [CrossRef]
  9. R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguide,” Electron. Lett. 21, 581–583 (1985). [CrossRef]
  10. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985). [CrossRef]
  11. T. Feuchter and C. Thirstrup, “High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity,” IEEE Photon. Technol. Lett. 6, 1244–1247 (1994). [CrossRef]
  12. W. B. Joyce and B. C. Deloach, “Alignment of Gaussian beams,” Appl. Opt. 23, 4187–4196, (1984). [CrossRef]
  13. L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, P. Mergo, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Low-loss patch cords by effective splicing of various photonic crystal fibers with standard single mode fiber,” J. Lightwave Technol. 29, 2940–2946 (2011). [CrossRef]
  14. Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009). [CrossRef]
  15. M. Thual, P. Rochard, P. Chanclou, and L. Quetel, “Contribution to research on micro-lensed fibers for modes coupling,” Fiber Integr. Opt. 27, 532–541 (2008). [CrossRef]
  16. S. Combrié, E. Weidner, A. De Rossi, S. Bansropun, and S. Cassette, “Detailed analysis by Fabry-Perot method of slab photonic crystal line-defect waveguides and cavities in aluminium-free material system,” Opt. Express 14, 7353–7361 (2006). [CrossRef]
  17. J.-I. Sakai and T. Kimura, “Design of a miniature lens for semiconductor laser to single-mode fiber coupling,” IEEE J. Quantum Electron. 16, 1059–1066 (1980). [CrossRef]
  18. A. Akrout, K. Lengle, T. N. Nguyen, P. Rochard, L. Bramerie, M. Gay, M. Thual, S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, and A. De Rossi, “Coupling between PhC membrane and lensed fiber: simulations and measurements,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), pp. 137–138.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited