OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3398–3403

High-bandwidth optical magnetometer

Ricardo Jiménez-Martínez, W. Clark Griffith, Svenja Knappe, John Kitching, and Mark Prouty  »View Author Affiliations

JOSA B, Vol. 29, Issue 12, pp. 3398-3403 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (464 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a scalar Rb87 optical magnetometer that retains magnetic-field sensitivities below 10pT/Hz over 3 dB bandwidths of 10 kHz in an ambient field Bo=11.4μT and using a measurement volume of 1mm3. The magnetometer operates at high atomic densities where both the sensitivity and the bandwidth are limited by spin-exchange collisions between the alkali atoms. By operating in this regime, our measurements show that the bandwidth of the magnetometer can be increased without a significant degradation in its sensitivity.

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(130.6010) Integrated optics : Sensors
(300.6210) Spectroscopy : Spectroscopy, atomic

ToC Category:

Original Manuscript: July 3, 2012
Revised Manuscript: October 17, 2012
Manuscript Accepted: October 23, 2012
Published: November 28, 2012

Ricardo Jiménez-Martínez, W. Clark Griffith, Svenja Knappe, John Kitching, and Mark Prouty, "High-bandwidth optical magnetometer," J. Opt. Soc. Am. B 29, 3398-3403 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007). [CrossRef]
  2. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002). [CrossRef]
  3. H. H. Nelson and J. R. McDonald, “Multisensor towed array detection system for UXO detection,” IEEE Trans. Geosci. Remote Sens. 39, 1139–1145 (2001). [CrossRef]
  4. S. D. Billings, “Discrimination and classification of buried unexploded ordnance using magnetometry,” IEEE Trans. Geosci. Remote Sens. 42, 1241–1251 (2004). [CrossRef]
  5. S. Billings, F. Shubitidze, L. Pasion, L. Beran, and J. Foley, “Requirements for unexploded ordnance detection and discrimination in the marine environment using magnetic and electromagnetic sensors,” in Proceedings of OCEANS 2010 IEEE-Sidney (IEEE, 2010), p. 18.
  6. P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103–4 (2005). [CrossRef]
  7. J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum. 77, 113106–7 (2006). [CrossRef]
  8. V. Shah, G. Vasilakis, and M. V. Romalis, “High bandwidth atomic magnetometry with continuous quantum nondemolition measurements,” Phys. Rev. Lett. 104, 013601 (2010). [CrossRef]
  9. W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6, 280 (1961). [CrossRef]
  10. P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004). [CrossRef]
  11. P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90, 081102–3 (2007). [CrossRef]
  12. J. Preusser, V. Gerginov, S. Knappe, and J. Kitching, “A microfabricated photonic magnetometer,” in Proceedings of the IEEE Sensors Conference (IEEE, 2008), p. 344.
  13. S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010). [CrossRef]
  14. M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with cs vapor,” Phys. Rev. A 77, 033408 (2008). [CrossRef]
  15. S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. thesis (Princeton University, 2008).
  16. W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16, 1877–1891 (1977). [CrossRef]
  17. V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics 1, 649–652 (2007). [CrossRef]
  18. J. C. Camparo, “Conversion of laser phase noise to amplitude noise in an optically thick vapor,” J. Opt. Soc. Am. B 15, 1177–1186 (1998). [CrossRef]
  19. R. Jiménez-Martínez, S. Knappe, W. C. Griffith, and J. Kitching, “Conversion of laser-frequency noise to optical-rotation noise in cesium vapor,” Opt. Lett. 34, 2519–2521 (2009). [CrossRef]
  20. I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005). [CrossRef]
  21. W. C. Griffith, S. Knappe, and J. Kitching, “Femtotesla atomic magnetometry in a microfabricated vapor cell,” Opt. Express 18, 27167–27172 (2010). [CrossRef]
  22. M. V. Romalis, “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,” Phys. Rev. Lett. 105, 243001 (2010). [CrossRef]
  23. D. Drung, H. Matz, and H. Koch, “A 5-MHz bandwidth SQUID magnetometer with additional positive feedback,” Rev. Sci. Instrum. 66, 3008–3015 (1995). [CrossRef]
  24. C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97, 243703 (2010). [CrossRef]
  25. D. Budker, D. F. Kimball, and D. P. DeMille, Atomic Physics: An Exploration Through Problems and Solutions (Oxford University, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited