OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3419–3428

Geometry-controlled nonlinear optical response of quantum graphs

Shoresh Shafei, Rick Lytel, and Mark G. Kuzyk  »View Author Affiliations

JOSA B, Vol. 29, Issue 12, pp. 3419-3428 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1499 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study for the first time the effect of the geometry of quantum wire networks on their nonlinear optical properties and show that for some geometries, the first hyperpolarizability is largely enhanced and the second hyperpolarizability is always negative or zero. We use a one-electron model with tight transverse confinement. In the limit of infinite transverse confinement, the transverse wavefunctions drop out of the hyperpolarizabilities, but their residual effects are essential to include in the sum rules. The effects of geometry are manifested in the projections of the transition moments of each wire segment onto the 2D lab frame. Numerical optimization of the geometry of a loop leads to hyperpolarizabilities that rival the best chromophores. We suggest that a combination of geometry and quantum-confinement effects can lead to systems with ultralarge nonlinear response.

© 2012 Optical Society of America

OCIS Codes
(020.4900) Atomic and molecular physics : Oscillator strengths
(190.0190) Nonlinear optics : Nonlinear optics
(160.1245) Materials : Artificially engineered materials

ToC Category:
Atomic and Molecular Physics

Original Manuscript: August 13, 2012
Revised Manuscript: October 20, 2012
Manuscript Accepted: October 24, 2012
Published: November 29, 2012

Shoresh Shafei, Rick Lytel, and Mark G. Kuzyk, "Geometry-controlled nonlinear optical response of quantum graphs," J. Opt. Soc. Am. B 29, 3419-3428 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. Brédas, J. Perry, and S. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327, 1485–1488 (2010). [CrossRef]
  2. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001). [CrossRef]
  3. A. Feizpour, X. Xing, and A. Steinberg, “Amplifying single-photon nonlinearity using weak measurements,” Phys. Rev. Lett. 107, 133603 (2011). [CrossRef]
  4. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999). [CrossRef]
  5. I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, “Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy,” J. Am. Chem. Soc. 125, 7860–7865(2003). [CrossRef]
  6. M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85, 1218–1221 (2000). [CrossRef]
  7. M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities,” Opt. Lett. 25, 1183–1185 (2000). [CrossRef]
  8. M. C. Kuzyk and M. G. Kuzyk, “Monte Carlo studies of the fundamental limits of the intrinsic hyperpolarizability,” J. Opt. Soc. Am. B 25, 103–110 (2008). [CrossRef]
  9. S. Shafei, M. C. Kuzyk, and M. G. Kuzyk, “Monte Carlo studies of the intrinsic second hyperpolarizability,” J. Opt. Soc. Am. B 27, 1849–1856 (2010). [CrossRef]
  10. J. Zhou, M. G. Kuzyk, and D. S. Watkins, “Pushing the hyperpolarizability to the limit,” Opt. Lett. 31, 2891–2893 (2006). [CrossRef]
  11. J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76, 053831 (2007). [CrossRef]
  12. K. Tripathy, J. Pérez Moreno, M. G. Kuzyk, B. J. Coe, K. Clays, and A. M. Kelley, “Why hyperpolarizabilities fall short of the fundamental quantum limits,” J. Chem. Phys. 121, 7932–7945 (2004). [CrossRef]
  13. S. Shafei and M. G. Kuzyk, “Critical role of the energy spectrum in determining the nonlinear-optical response of a quantum system,” J. Opt. Soc. Am. B 28, 882–891 (2011). [CrossRef]
  14. H. Frohlich, “Die spezifische wärme der elektronen kleiner metallteilchen bei tiefen temperaturen,” Physica 4, 406–412 (1937).
  15. R. Kubo, “Electronic properties of metallic fine particles. i,” J. Phys. Soc. Jpn. 17, 975–986 (1962). [CrossRef]
  16. R. C. Jaklevic, J. Lambe, M. Mikkor, and W. C. Vassell, “Observation of electron standing waves in a crystalline box,” Phys. Rev. Lett. 26, 88–92 (1971). [CrossRef]
  17. L. Brus, “Electron–electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” J. Chem. Phys. 80, 4403 (1984). [CrossRef]
  18. R. Ashoori, “Electrons in artificial atoms,” Nature 379, 413–419 (1996). [CrossRef]
  19. C. Lieber and Z. Wang, “Functional nanowires,” MRS Bull. 32, 99–108 (2007). [CrossRef]
  20. M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001). [CrossRef]
  21. J. Johnson, H. Yan, R. Schaller, P. Petersen, P. Yang, and R. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2, 279–283 (2002). [CrossRef]
  22. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009). [CrossRef]
  23. H. Yan, H. Choe, S. Nam, Y. Hu, S. Das, J. Klemic, J. Ellenbogen, and C. Lieber, “Programmable nanowire circuits for nanoprocessors,” Nature 470, 240–244 (2011). [CrossRef]
  24. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647–1655 (1986). [CrossRef]
  25. G. Sanders and Y. Chang, “Theory of optical properties of quantum wires in porous silicon,” Phys. Rev. B 45, 9202–9213 (1992). [CrossRef]
  26. F. Buda, J. Kohanoff, and M. Parrinello, “Optical properties of porous silicon: a first-principles study,” Phys. Rev. Lett. 69, 1272–1275 (1992). [CrossRef]
  27. R. Chen, D. Lin, and B. Mendoza, “Enhancement of the third-order nonlinear optical susceptibility in si quantum wires,” Phys. Rev. B 48, 11879–11882 (1993). [CrossRef]
  28. J. Xia and K. Cheah, “Quantum confinement effect in thin quantum wires,” Phys. Rev. B 55, 15688–15693 (1997). [CrossRef]
  29. J. Ballesteros, J. Solis, R. Serna, and C. Afonso, “Nanocrystal size dependence of the third-order nonlinear optical response of cu: Alo thin films,” Appl. Phys. Lett. 74, 2791 (1999). [CrossRef]
  30. G. Banfi, V. Degiorgio, and D. Ricard, “Nonlinear optical properties of semiconductor nanocrystals,” Adv. Phys. 47, 447–510 (1998). [CrossRef]
  31. V. Ostroverkhov, O. Ostroverkhova, R. Petschek, K. Singer, L. Sukhomlinova, R. Twieg, S. Wang, and L. Chien, “Optimization of the molecular hyperpolarizability for second harmonic generation in chiral media,” Chem. Phys. 257, 263–274 (2000). [CrossRef]
  32. S. Keinan, M. J. Therien, D. N. Beratan, and W. T. Yang, “Molecular design of porphyrin-based nonlinear optical materials,” J. Phys. Chem. A 112, 12203–12207 (2008). [CrossRef]
  33. X. Chu, M. Yang, and K. Jackson, “The effect of geometry on cluster polarizability: Studies of sodium, copper, and silicon clusters at shape-transition sizes,” J. Chem. Phys. 134, 234505 (2011). [CrossRef]
  34. Z. Zhou, Z. Liu, Z. Li, X. Huang, and C. Sun, “Shape effect of graphene quantum dot on enhancing second order nonlinear optical response and spin multiplicity in nh2-gqd-no2 systems,” J. Phys. Chem. C115, 16282–16286 (2011).
  35. M. G. Kuzyk and D. S. Watkins, “The effects of geometry on the hyperpolarizability,” J. Chem. Phys. 124, 244104 (2006). [CrossRef]
  36. S. Shafei and M. G. Kuzyk, “The effect of extreme confinement on the nonlinear-optical response of quantum wires,” J. Nonlinear Opt. Phys. Mater. 20, 427–441 (2011). [CrossRef]
  37. E. Hadjimichael, W. Currie, and S. Fallieros, “The Thomas–Reiche–Kuhn sum rule and the rigid rotator,” Am. J. Phys. 65, 335–341 (1997). [CrossRef]
  38. P. Harrison, Quantum Wells, Wires and Dots (Wiley, 2005).
  39. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two Electron Atoms (Plenum, 1977).
  40. F. Fernández, “The Thomas-Reiche-Kuhn sum rule for the rigid rotator,” Int. J. Math. Ed. Sci. Technol. 33, 636–640 (2002).
  41. M. Belloni and R. W. Robinett, “Quantum mechanical sum rules for two model systems,” Am. J. Phys. 76, 798–806 (2008). [CrossRef]
  42. M. G. Kuzyk, “Compact sum-over-states expression without dipolar terms for calculating nonlinear susceptibilities,” Phys. Rev. A 72, 053819 (2005). [CrossRef]
  43. J. Pérez-Moreno, K. Clays, and M. G. Kuzyk, “A new dipole-free sum-over-states expression for the second hyperpolarizability,” J. Chem. Phys. 128, 084109 (2008). [CrossRef]
  44. B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971). [CrossRef]
  45. M. G. Kuzyk, “A birds-eye view of nonlinear-optical processes: unification through scale invariance,” Nonlinear Opt. Quantum Opt. 40, 1–13 (2010).
  46. T. Atherton, J. Lesnefsky, G. Wiggers, and R. Petschek, “Maximizing the hyperpolarizability poorly determines the potential,” J. Opt. Soc. Am. B 29, 513–520 (2012). [CrossRef]
  47. M. G. Kuzyk, “Using fundamental principles to understand and optimize nonlinear-optical materials,” J. Mater. Chem. 19, 7444–7465 (2009). [CrossRef]
  48. R. Lytel, S. Shafei, J. H. Smith, and M. G. Kuzyk, “The influence of geometry and topology of quantum graphs on their nonlinear-optical properties,” ArXiv e-prints (2012).
  49. Z. Pastore and R. Blümel, “An exact periodic-orbit formula for the energy levels of the three-pronged star graph,” J. Phys. A 42, 135102 (2009). [CrossRef]
  50. M. G. Kuzyk, “Quantum limits of the hyper-Rayleigh scattering susceptibility,” IEEE J. Sel. Topics Quantum Electron. 7, 774–780 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited