OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3429–3433

Experimentally testing the Bell inequality violation by optimizing the measurement settings

Daihe Fan, Weijie Guo, and Lianfu Wei  »View Author Affiliations


JOSA B, Vol. 29, Issue 12, pp. 3429-3433 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003429


View Full Text Article

Enhanced HTML    Acrobat PDF (245 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Many experiments have been made to test the Clauser–Horne–Shimony–Holt (CHSH)–Bell inequality (CBI). However, the Cirel’son’s limit has not been reached yet, due to various practically existing imperfections. In this paper, we experimentally investigate how to select the measurement settings for obtaining the optimal violation of CBI for a mixed entangled state. With the commercialized entangled source, we first determine the entanglement degree of the generated photon pairs by using the tomographic technique, and then numerically optimize the measurement settings. Finally, we experimentally obtain the optimal violation of the CBI with the present commercialized entangled source without the maximal entanglement.

© 2012 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(000.2658) General : Fundamental tests

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 22, 2012
Revised Manuscript: October 9, 2012
Manuscript Accepted: October 25, 2012
Published: November 29, 2012

Citation
Daihe Fan, Weijie Guo, and Lianfu Wei, "Experimentally testing the Bell inequality violation by optimizing the measurement settings," J. Opt. Soc. Am. B 29, 3429-3433 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-12-3429


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935). [CrossRef]
  2. J. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1, 195–200 (1964).
  3. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969). [CrossRef]
  4. B. S. Cirel’son, “Quantum generalizations of Bell’s inequality,” Lett. Math. Phys. 4, 93–100 (1980). [CrossRef]
  5. P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef]
  6. M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Monroe, and D. J. Wineland, “Experimental violation of a Bell’s inequality with efficient detection,” Nature 409, 791–794 (2001). [CrossRef]
  7. H. Sakai, T. Saito, T. Ikeda, K. Itoh, T. Kawabata, H. Kuboki, Y. Maeda, N. Matsui, C. Rangacharyulu, M. Sasano, Y. Satou, K. Sekiguchi, K. Suda, A. Tamii, T. Uesaka, and K. Yako, “Spin correlations of strongly interacting massive fermion pairs as a test of Bell’s inequality,” Phys. Rev. Lett. 97, 150405 (2006). [CrossRef]
  8. M. Ansmann, H. Wang, R. C. Bialczak, M. Hofheinz, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, A. N. Cleland, and J. M. Martinis, “Violation of Bell’s inequality in Josephson phase qubits,” Nature 461, 504–506 (2009). [CrossRef]
  9. L. Wei, Y. Liu, and F. Nori, “Testing Bells inequality in a constantly coupled Josephson circuit by effective single-qubit operations,” Phys. Rev. B 72, 104516 (2005). [CrossRef]
  10. L. Wei, Y. Liu, M. Storcz, and F. Nori, “Macroscopic Einstein-Podolsky-Rosen pairs in superconducting circuits,” Phys. Rev. A 73, 052307 (2006). [CrossRef]
  11. A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett. 47, 460–463 (1981). [CrossRef]
  12. Y. F. Huang, C. F. Li, Y. S. Zhang, and G. C. Guo, “Experimental test of CHSH inequality for non-maximally entangled states,” Phys. Lett. Sect. A 287, 317–320 (2001). [CrossRef]
  13. E. Pomarico, J. D. Bancal, B. Sanguinetti, A. Rochdi, and N. Gisin, “Various quantum nonlocality tests with a commercial two-photon entanglement source,” Phys. Rev. A 83, 052104 (2011). [CrossRef]
  14. D. Magde and H. Mahr, “Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16 000 A,” Phys. Rev. Lett. 18, 905–907(1967). [CrossRef]
  15. F. Verstraete and M. M. Wolf, “Entanglement versus Bell violations and their behavior under local filtering operations,” Phys. Rev. Lett. 89, 170401 (2002). [CrossRef]
  16. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).
  17. R. F. Werner, “Quantum states with Einstein Podolsky Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277–4281 (1989). [CrossRef]
  18. G. Lima, G. Vallone, A. Chiuri, A. Cabello, and P. Mataloni, “Experimental Bell-inequality violation without the postselection loophole,” Phys. Rev. A 81, 040101(R) (2010). [CrossRef]
  19. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett. 81, 5039–5043(1998). [CrossRef]
  20. S. L. Braunstein, A. Mann, and M. Revzen, “Maximal violation of Bell inequalities for mixed states,” Phys. Rev. Lett. 68, 3259–3261 (1992). [CrossRef]
  21. R. Horodecki, P. Horodecki, and M. Horodecki, “Violating Bell inequality by mixed spin-1/2 states: necessary and sufficient condition,” Phys. Lett. A 200, 340–344 (1995). [CrossRef]
  22. Http://www.quantum-info.com/ .
  23. P. L. Knight and A. Miller, Measuring the Quantum States of Light (Cambridge University, 1997).
  24. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001). [CrossRef]
  25. M. A. Nielsen and I. L. Chuang, Quantum Computation and Information (Cambridge University, 2000).
  26. V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000). [CrossRef]
  27. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd ed. (Cambridge University, 1992).
  28. D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and Bell inequalities in the undergraduate laboratory,” Am. J. Phys. 70, 903–910 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited