OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: 215–219

Design of low-dispersion-discrepancy silicon waveguide for broadband polarization-independent wavelength conversion

Qiang Liu, Shiming Gao, Lizhong Cao, and Sailing He  »View Author Affiliations


JOSA B, Vol. 29, Issue 2, pp. 215-219 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000215


View Full Text Article

Enhanced HTML    Acrobat PDF (403 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a broadband polarization-independent wavelength conversion by reducing the dispersion discrepancy between the fundamental transverse electric (TE) and transverse magnetic (TM) modes in a silicon nanowire waveguide, through optimizing of the waveguide geometry. The size of the waveguide is optimized to 780nm×795nm (height×width) to ensure that the TE and TM zero-dispersion wavelengths locate at 1550nm, and the group velocity dispersion difference between the TE and TM modes is less than 33ps/(nm·km) in the wavelength range of 1300–1800 nm. Based on an angled-polarization pumped four-wave mixing scheme, a 1 dB polarization-independent bandwidth of 400 nm is achieved in a 0.8 cm-long optimized waveguide when the pump is set at 1553 nm. The tolerance to the pump angle detuning is also strengthened in the optimized waveguide.

© 2012 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 7, 2011
Revised Manuscript: October 28, 2011
Manuscript Accepted: October 31, 2011
Published: January 17, 2012

Citation
Qiang Liu, Shiming Gao, Lizhong Cao, and Sailing He, "Design of low-dispersion-discrepancy silicon waveguide for broadband polarization-independent wavelength conversion," J. Opt. Soc. Am. B 29, 215-219 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-2-215


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996). [CrossRef]
  2. R. Deckker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D 40, R249–R271 (2007).
  3. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
  4. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).
  5. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett. 91, 071113 (2007).
  6. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11, 2862–2872 (2003). [CrossRef]
  7. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” J. Lightwave Technol. 23, 2094–2102 (2005). [CrossRef]
  8. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006). [CrossRef]
  9. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005). [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  11. X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009). [CrossRef]
  12. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18, 1904–1908 (2010). [CrossRef]
  13. X. Liu, W. M. Green, X. Chen, I.-W. Hsieh, J. I. Dadap, Y. A. Vlasov, and R. M. Osgood, “Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,” Opt. Lett. 33, 2889–2891 (2008). [CrossRef]
  14. S. Gao, Z. Li, E.-K. Tien, S. He, and O. Boyraz, “Performance evaluation of nondegenerate wavelength conversion in a silicon nanowire waveguide,” J. Lightwave Technol. 28, 3079–3085 (2010).
  15. S. Gao, E.-K. Tien, Y. Huang, and S. He, “Experimental demonstration of bandwidth enhancement based on two-pump wavelength conversion in a silicon waveguide,” Opt. Express 18, 27885–27890 (2010).
  16. Q. Liu, S. Gao, Z. Li, Y. Xie, and S. He, “Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion,” Appl. Opt. 50, 1260–1265 (2011). [CrossRef]
  17. Z. Li, S. Gao, Q. Liu, and S. He, “Modified model for four-wave mixing-based wavelength conversion in silicon micro-ring resonators,” Opt. Commun. 284, 2215–2221 (2011). [CrossRef]
  18. B. A. Daniel and G. P. Agrawal, “Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects,” J. Opt. Soc. Am. B 27, 956–965 (2010). [CrossRef]
  19. S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 250–256 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited