OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: 220–225

Controllable nonlinear responses in a cavity electromechanical system

Cheng Jiang, Bin Chen, and Ka-Di Zhu  »View Author Affiliations

JOSA B, Vol. 29, Issue 2, pp. 220-225 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (559 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate nonlinear effects such as four-wave mixing (FWM) and bistability in a cavity electromechanical system based on the electromagnetically induced transparency effect. We show that the FWM can be resonantly enhanced under conditions of reduced linear absorption. We also demonstrate that bistable behavior of the mean intracavity photon number can appear in this system. The system may have potential applications in communication networks for frequency conversion.

© 2012 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Nonlinear Optics

Original Manuscript: August 8, 2011
Revised Manuscript: October 11, 2011
Manuscript Accepted: October 31, 2011
Published: January 19, 2012

Cheng Jiang, Bin Chen, and Ka-Di Zhu, "Controllable nonlinear responses in a cavity electromechanical system," J. Opt. Soc. Am. B 29, 220-225 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3, 1131–1145 (1997). [CrossRef]
  2. K. Kitayama, “Highly stabilized millimeter-wave generation by using fiber-optic frequency-tunable comb generator,” J. Lightwave Technol. 15, 883–893 (1997). [CrossRef]
  3. A. Wiberg, P. P. Millán, M. V. Andrés, and P. O. Hedekvist, “Microwave-photonic frequency multiplication utilizing optical four-wave mixing and fiber Bragg gratings,” J. Lightwave Technol. 24, 329–334 (2006). [CrossRef]
  4. S. E. Harris, J. E. Field, and A. Imamoǧlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990). [CrossRef]
  5. K.-J. Boller, A. Imamoǧlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991). [CrossRef]
  6. Y. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21, 1064–1066 (1996). [CrossRef]
  7. H. Schmidt and A. Imamoǧlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996). [CrossRef]
  8. B. S. Ham, M. S. Shahriar, and P. R. Hemmer, “Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal,” Opt. Lett. 22, 1138–1140 (1997). [CrossRef]
  9. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006). [CrossRef]
  10. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007). [CrossRef]
  11. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007). [CrossRef]
  12. C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008). [CrossRef]
  13. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008). [CrossRef]
  14. S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009). [CrossRef]
  15. M. J. Woolley, A. C. Doherty, G. J. Milburn, and K. C. Schwab, “Nanomechanical squeezing with detection via a microwave cavity,” Phys. Rev. A 78, 062303 (2008). [CrossRef]
  16. C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a microwave cavity interferometer,” Nat. Phys. 4, 555–560 (2008). [CrossRef]
  17. J. D. Teufel, J. W. Harlow, C. A. Regal, and K. W. Lehnert, “Dynamical backaction of microwave fields on a nanomechanical oscillator,” Phys. Rev. Lett. 101, 197203 (2008). [CrossRef]
  18. T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, and K. C. Schwab, “Preparation and detection of a mechanical resonator near the ground state of motion,” Nature 463, 72–75 (2010). [CrossRef]
  19. A. Schliesser, “Cavity optomechanics and optical frequency comb generation with silica whispering-gallery-mode microresonators,” Thesis (Ludwig-Maximilians-Universität München, 2009), http://edoc.ub.uni-muenchen.de/10940 .
  20. G. S. Agarwal and S. M. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803(R) (2010). [CrossRef]
  21. S. Weis, R. Rivière, S. Delèglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef]
  22. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011). [CrossRef]
  23. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011). [CrossRef]
  24. A. Dorsel, J. D. McCullen, P. Meystre, E. Vignes, and H. Walther, “Optical bistability and mirror confinement induced by radiation pressure,” Phys. Rev. Lett. 51, 1550–1553 (1983). [CrossRef]
  25. C. Fabre, M. Pinard, S. Bourzeix, A. Heidmann, E. Giacobino, and S. Reynaud, “Quantum-noise reduction using a cavity with a movable mirror,” Phys. Rev. A 49, 1337–1343 (1994). [CrossRef]
  26. S. Huang and G. S. Agarwal, “Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: radiation-pressure-induced four-wave-mixing cavity optomechanics,” Phys. Rev. A 81, 033830 (2010). [CrossRef]
  27. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011). [CrossRef]
  28. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  29. B. I. Greence, J. F. Mueller, J. Orenstein, D. H. Rapkine, S. S. Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61, 325–328 (1988). [CrossRef]
  30. R. W. Boyd, Nonlinear Optics (Academic, 2008), pp. 297–304.
  31. S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn, “Cavity nonlinear optics at low photon numbers from collective atomic motion,” Phys. Rev. Lett. 99, 213601 (2007). [CrossRef]
  32. F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008). [CrossRef]
  33. R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010). [CrossRef]
  34. C. W. Gardiner and P. Zoller, Quantum Noise (Springer, 2004).
  35. J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express 19, 4458–4463 (2011). [CrossRef]
  36. A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008). [CrossRef]
  37. B. P. Venkatesh, J. Larson, and D. H. J. O’Dell, “Band-structure loops and multistabilityin cavity QED,” Phys. Rev. A 83, 063606 (2011). [CrossRef]
  38. R. Ghobadi, A. R. Bahrampour, and C. Simon, “Quantum optomechanics in the bistable regime,” Phys. Rev. A 84, 033846 (2011). [CrossRef]
  39. C. Jiang, B. Chen, and K. D. Zhu, “Tunable pulse delay and advancement device based on a cavity electromechanical system,” Europhys. Lett. 94, 38002 (2011). [CrossRef]
  40. M. D. Reid and D. F. Walls, “Generation of squeezed states via degenerate four-wave mixing,” Phys. Rev. A 31, 1622–1635 (1985). [CrossRef]
  41. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited