OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: 238–243

Raman transient response and enhanced soliton self-frequency shift in ZBLAN fiber

Xin Yan, Chihiro Kito, Shohei Miyoshi, Meisong Liao, Takenobu Suzuki, and Yasutake Ohishi  »View Author Affiliations

JOSA B, Vol. 29, Issue 2, pp. 238-243 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (447 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have measured the Raman gain coefficient spectrum and third-order susceptibility χ(3) of a fluoride ZBLAN glass and the Raman response function and Raman fraction of ZBLAN fiber are obtained from the Raman gain coefficient spectrum. We evaluate the performance of soliton self-frequency shift in ZBLAN fiber based on Raman gain coefficient spectrum and generalized nonlinear Schrödinger equation. It is numerically demonstrated that using ZBLAN fiber allows a significant enhancement of the soliton self-frequency shift as compared to silica fiber with comparable dispersion.

© 2012 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 6, 2011
Revised Manuscript: November 3, 2011
Manuscript Accepted: November 4, 2011
Published: January 25, 2012

Xin Yan, Chihiro Kito, Shohei Miyoshi, Meisong Liao, Takenobu Suzuki, and Yasutake Ohishi, "Raman transient response and enhanced soliton self-frequency shift in ZBLAN fiber," J. Opt. Soc. Am. B 29, 238-243 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002). [CrossRef]
  2. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001). [CrossRef]
  3. M. G. Banaee and J. F. Young, “High-order soliton breakup and soliton self-frequency shifts in a microstructured optical fiber,” J. Opt. Soc. Am. B 23, 1484–1489 (2006). [CrossRef]
  4. A. V. Gorbach and D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express 16, 4858–4865 (2008). [CrossRef]
  5. B. Barviau, O. Vanvincq, A. Mussor, Y. Quiquempois, G. Melin, and A. Kudlinski, “Enhanced soliton self-frequency shift and CW supercontinnum generation in GeO2-doped core photonic crystal fibers,” J. Opt. Soc. Am. B 28, 1152–1160 (2011). [CrossRef]
  6. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16, 13651–13656(2008).
  7. R. Jose, Y. Arai, and Y. Ohishi, “Raman scattering characteristics of the TBSN-based tellurite glass system as a new Raman gain medium,” J. Opt. Soc. Am. B 24, 1517–1526 (2007). [CrossRef]
  8. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010). [CrossRef]
  9. C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006). [CrossRef]
  10. Z. G. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009). [CrossRef]
  11. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
  12. G. P. Agrawal, Nolinear Fiber Optics, 4th. ed. (Academic, 2007).
  13. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086–3088 (2006). [CrossRef]
  14. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892(2002). [CrossRef]
  15. T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993). [CrossRef]
  16. C. Petersen, S. Dupont, C. Agger, J. Thogersen, O. Bang, and S. R. Keiging, “Stimulated Raman scattering in soft glass fluoride fibers,” J. Opt. Soc. Am. B 28, 2310–2313 (2011). [CrossRef]
  17. M. N. Islam (ed.), Raman Amplifiers for Telecommunications 1 Physical Principles (Springer, 2003).
  18. G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).
  19. R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74, 5954–5961 (1981).
  20. A. Icsevgi and W. E. Lamb, “Propagation of light pulses in a laser amplifier,” Phys. Rev. 185, 517–545 (1969). [CrossRef]
  21. R. Jose, G. S. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in TeO2-BaO-SrO-Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651–L653 (2007). [CrossRef]
  22. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  23. H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993). [CrossRef]
  24. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B. 6, 1159–1166 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited