OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A1–A5

Observation of a stronger-than-adiabatic change of light trapped in an ultrafast switched GaAs-AlAs microcavity

Philip J. Harding, Huib J. Bakker, Alex Hartsuiker, Julien Claudon, Allard P. Mosk, Jean-Michel Gérard, and Willem L. Vos  »View Author Affiliations

JOSA B, Vol. 29, Issue 2, pp. A1-A5 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the time-resolved reflectivity spectrum of a switched planar GaAs-AlAs microcavity. Between 5 and 40 ps after the switching (pump) pulse, we observe a strong excess probe reflectivity and a change of the frequency of light trapped in the cavity up to 5 linewidths away from the cavity resonance. This frequency change does not adiabatically follow the fast-changing cavity resonance. The frequency change is attributed to an accumulated phase change due to the time-dependent refractive index. An analytical model predicts dynamics in qualitative agreement with the experiments, and points to crucial parameters that control future applications.

© 2012 Optical Society of America

OCIS Codes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

Original Manuscript: September 30, 2011
Revised Manuscript: December 14, 2011
Manuscript Accepted: December 15, 2011
Published: February 1, 2012

Philip J. Harding, Huib J. Bakker, Alex Hartsuiker, Julien Claudon, Allard P. Mosk, Jean-Michel Gérard, and Willem L. Vos, "Observation of a stronger-than-adiabatic change of light trapped in an ultrafast switched GaAs-AlAs microcavity," J. Opt. Soc. Am. B 29, A1-A5 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Noda and T. Baba, Roadmap on Photonic Crystals (Kluwer, 2003).
  2. G. Breit and J. A. Wheeler, “Collision of two light quanta,” Phys. Rev. 46, 1087–1091 (1934). [CrossRef]
  3. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119(1961). [CrossRef]
  4. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  5. P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102(R) (2002).
  6. E. J. Reed, M. Soljaĉić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90, 203904 (2003). [CrossRef]
  7. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004). [CrossRef]
  8. M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73, 051803(R) (2006). [CrossRef]
  9. Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recatia, and I. Carusotto, “Photon energy lifter,” Opt. Express 14, 7270–7278 (2006). [CrossRef]
  10. S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nature Photonics 1, 293–296 (2007). [CrossRef]
  11. M. W. McCutcheon, A. G. Pattantyus-Abraham, G. W. Rieger, and J. F. Young, “Emission spectrum of electromagnetic energy stored in a dynamically perturbed optical microcavity,” Opt. Express 15, 11472–11480 (2007). [CrossRef]
  12. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped Light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102, 043907 (2009). [CrossRef]
  13. P. J. Harding, T. G. Euser, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Ultrafast optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007). [CrossRef]
  14. P. J. Harding, A. P. Mosk, A. Hartsuiker, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Time-resolved resonance and linewidth of an ultrafast switched GaAs/AlAs microcavity,” arxiv.org/0901.3855.
  15. A. Hartsuiker, A. P. Mosk, J. Claudon, J.-M. Gérard, and W. L. Vos, “Measuring the true quality factor of an ultrafast photonic microcavity: homogeneous versus inhomogeneous broadening,” arxiv.org/0906.1961.
  16. T. G. Euser, P. J. Harding, and W. L. Vos, “Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors,” Rev. Sci. Instrum. 80, 073104 (2009). [CrossRef]
  17. T. G. Euser and W. L. Vos, “Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors,” J. Appl. Phys. 97, 043102 (2005). [CrossRef]
  18. P. J. Harding, T. G. Euser, and W. L. Vos, “Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals,” J. Opt. Soc. Am. B 26, 610–619 (2009). [CrossRef]
  19. The measured spectrum J(ω) is the Fourier Transform of the time-dependent probe electric field E(t) that exits fromthe cavity J(ω)=πr2(ϵ0c)−1|∫−∞∞dtE(t)e−iωt|2with c the speed of light and r the radius of the beam and neglecting amplification and conversion factors. Since the detection system’s integration time of 150 ns is much longer than a probe-sample interaction time, the boundaries of the integral are taken to ±∞. Due to averaging of probe pulses over alternating pumped and unpumped events, the correct transient reflectivity is 2× greater than raw data as in Figs. 2 and 3; Fig. 4 has been corrected.
  20. W. A. Hügel, M. F. Heinrich, M. Wegener, Q. T. Vu, L. Banjai, and H. Haug, “Photon echoes from semiconductor band-to-band continuum transitions in the regime of Coulomb quantum kinetics,” Phys. Rev. Lett. 83, 3313–3316 (1999). [CrossRef]
  21. D. J. Bohm, Quantum Theory (Dover, 1989).
  22. P. W. Atkins and R. C. Gurd, “Numerical integration of the 2-level time-dependent Schrödinger equation,” Chem. Phys. Lett 16, 265–269 (1972). [CrossRef]
  23. T. Berstermann, A. V. Scherbakov, A. V. Akimov, D. R. Yakovlev, N. A. Gippius, B. A. Glavin, I. Sagnes, J. Bloch, and M. Bayer, “Terahertz polariton sidebands generated by ultrafast strain pulses in an optical semiconductor microcavity,” Phys. Rev. B 80, 075301 (2009). [CrossRef]
  24. G. Ctistis, E. Yuce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011). [CrossRef]
  25. G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited