OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A103–A118

Hybrid structures of magnetic semiconductors and plasmonic crystals: a novel concept for magneto-optical devices [Invited]

Ilya A. Akimov, Vladimir I. Belotelov, Alexey V. Scherbakov, Martin Pohl, Andrey N. Kalish, Alexey S. Salasyuk, Michael Bombeck, Christian Brüggemann, Andrey V. Akimov, Roslan I. Dzhioev, Vladimir L. Korenev, Yuri G. Kusrayev, Victor F. Sapega, Vyacheslav A. Kotov, Dmitri R. Yakovlev, Anatoly K. Zvezdin, and Manfred Bayer  »View Author Affiliations


JOSA B, Vol. 29, Issue 2, pp. A103-A118 (2012)
http://dx.doi.org/10.1364/JOSAB.29.00A103


View Full Text Article

Enhanced HTML    Acrobat PDF (1439 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose here to combine magnetic semiconductors and plasmonic crystals to obtain a new class of devices, in which magneto-optical effects are dramatically enhanced. So far we have studied the two building blocks separately, and we demonstrate here features of these systems that make them appealing for combination. Namely, for magnetic semiconductors we demonstrate efficient tools for manipulating their magnetization. In particular, we show that in paramagnetic (Ga,Mn)As the magnetic ions can be oriented optically. For ferromagnetic (Ga,Mn)As an ultrafast strain pulse moves the magnetization out of its equilibrium position, inducing a subsequent precessional motion about the equilibrium orientation. For plasmonic crystals, on the other hand, we show that the magneto-optical effects are dramatically enhanced in both reflection and transmission. From combining the two systems, we expect to be able to obtain magneto-optical materials that can be controlled efficiently through manipulation of the magnetization of the magnetic semiconductor onto which the plasmonic crystal is deposited.

© 2012 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(160.6000) Materials : Semiconductor materials
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(050.6624) Diffraction and gratings : Subwavelength structures

History
Original Manuscript: November 7, 2011
Manuscript Accepted: December 6, 2011
Published: February 1, 2012

Citation
Ilya A. Akimov, Vladimir I. Belotelov, Alexey V. Scherbakov, Martin Pohl, Andrey N. Kalish, Alexey S. Salasyuk, Michael Bombeck, Christian Brüggemann, Andrey V. Akimov, Roslan I. Dzhioev, Vladimir L. Korenev, Yuri G. Kusrayev, Victor F. Sapega, Vyacheslav A. Kotov, Dmitri R. Yakovlev, Anatoly K. Zvezdin, and Manfred Bayer, "Hybrid structures of magnetic semiconductors and plasmonic crystals: a novel concept for magneto-optical devices [Invited]," J. Opt. Soc. Am. B 29, A103-A118 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-2-A103


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Dietl, “A ten-year perspective on dilute magnetic semiconductors and oxides,” Nat. Mater. 9, 965–974 (2010). [CrossRef]
  2. B. P. Zakharchenya and L. V. Korenev, “Integrating magnetism into semiconductor electronics,” Phys. Uspekhi 48, 603–608 (2005). [CrossRef]
  3. I. Zutic, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004). [CrossRef]
  4. M. Johnson and M. Spin, Physics of Semiconductors, M. Dyakonov, ed. (Springer, 2008), Ch. 10.
  5. J. Heber, “Plasmonics: surfing the wave,” Nature 461, 720–722 (2009). [CrossRef]
  6. A. Polman, “Plasmonics applied,” Science 322, 868–869 (2008). [CrossRef]
  7. S. Maier, ed., “Special Issue: Plasmonics and Nanophotonics,” Phys. Stat. Sol. (RRL) 4 (2010).
  8. S. I. Bozhevolnyi, Plasmonics Nanoguides and Circuits (Pan Stanford, 2008).
  9. H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010). [CrossRef]
  10. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006). [CrossRef]
  11. K. Kneipp, “Surface-enhanced Raman scattering,” Physics Today 60(11), 40–46 (2007). [CrossRef]
  12. M. Inoue, K. Arai, T. Fujii, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85, 5768–5771 (1999). [CrossRef]
  13. A. Levy, H. C. Yang, M. J. Steel, and J. Fujita, “Flat-top response in one-dimensional magnetic photonic bandgap structures with Faraday rotation enhancement,” J. Lightwave Technol. 19, 1964–1969 (2001). [CrossRef]
  14. V. I. Belotelov and A. K. Zvezdin, “Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry,” J. Magn. Magn. Mater. 300, e260–e263 (2006). [CrossRef]
  15. V. I. Belotelov, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Slow light phenomenon and extraordinary magnetooptical effects in periodic nanostructured media,” J. Magn. Magn. Mater. 321, 826–828 (2009). [CrossRef]
  16. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magnetooptical effects and transmission through the metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007). [CrossRef]
  17. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, 1997).
  18. G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp, “Suppression of electron spin relaxation in Mn-doped GaAs,” Phys. Rev. Lett. 101, 076602 (2008). [CrossRef]
  19. I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, E. A. Zhukov, D. R. Yakovlev, and M. Bayer, “Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques,” Phys. Rev. B 80, 081203(R) (2009). [CrossRef]
  20. E. L. Ivchenko, “Exchange interaction and scattering of light with reversal of the hole angular momentum at an acceptor in quantum-well structures,” Sov. Phys. Solid State 34, 254–260(1992).
  21. V. F. Sapega, T. Ruf, M. Cardona, K. Ploog, E. L. Ivchenko, and D. N. Mirlin, “Resonant Raman scattering due to bound-carrier spin flip in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B 50, 2510–2519 (1994). [CrossRef]
  22. V. F. Sapega, T. Ruf, and M. Cardona, “Spin-flip Raman study of exchange interactions in bulk GaAs:Mn,” Phys. Stat. Sol. B 226, 339–356 (2001). [CrossRef]
  23. I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, V. F. Sapega, D. R. Yakovlev, and M. Bayer, “Optical orientation of Mn2+ ions in GaAs in weak longitudinal magnetic fields,” Phys. Rev. Lett. 106, 147402 (2011). [CrossRef]
  24. C. Le Gall, L. Besombes, H. Boukari, R. Kolodka, J. Cibert, and H. Mariette, “Optical spin orientation of a single manganese atom in a semiconductor quantum dot using quasiresonant photoexcitation,” Phys. Rev. Lett. 102, 127402(2009). [CrossRef]
  25. M. Goryca, T. Kazimierczuk, M. Nawrocki, A. Golnik, J. A. Gaj, P. Kossacki, P. Wojnar, and G. Karczewski, “Optical manipulation of a single Mn spin in a CdTe-based quantum dot,” Phys. Rev. Lett. 103, 087401 (2009). [CrossRef]
  26. A. Abragam, The Principles of Nuclear Magnetism (Oxford, 1961), Chap. VIII.
  27. M. R. Armstrong, E. J. Reed, K.-Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285–288 (2009). [CrossRef]
  28. J. Zemen, J. Kučera, K. Olejník, and T. Jungwirth, “Magnetocrystalline anisotropies in (Ga,Mn)As: systematic theoretical study and comparison with experiment,” Phys. Rev. B 80, 155203 (2009). [CrossRef]
  29. M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, “Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration,” Phys. Rev. B 79, 195206 (2009). [CrossRef]
  30. U. Welp, V. K. Vlasko-Vlasov, X. Liu, J. K. Furdyna, and T. Wojtowicz, “Magnetic domain structure and magnetic anisotropy in Ga1−xMnxAs,” Phys. Rev. Lett. 90, 167206(2003). [CrossRef]
  31. M. Overby, A. Chernyshov, L. P. Rokhinson, X. Liu, and J. K. Furdyna, “GaMnAs-based hybrid multiferroic memory device,” Appl. Phys. Lett. 92, 192501 (2008). [CrossRef]
  32. A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008). [CrossRef]
  33. C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, “Ga1−xMnxAs/piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation,” Phys. Rev. B 78, 045203 (2008). [CrossRef]
  34. S. Chung, H. C. Kima, S. Lee, X. Liu, and J. K. Furdyna, “The effect of carrier density on magnetic anisotropy of the ferromagnetic semiconductor (Ga, Mn)As,” Solid State Commun. 149, 1739–1742 (2009). [CrossRef]
  35. D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, “Magnetization vector manipulation by electric fields,” Nature 455, 515–518 (2008). [CrossRef]
  36. J. Qi, Y. Xu, N. H. Tolk, X. Liu, J. K. Furdyna, and I. E. Perakis, “Coherent magnetization precession in GaMnAs induced by ultrafast optical excitation,” Appl. Phys. Lett. 91, 112506(2007). [CrossRef]
  37. Y. Hashimoto, S. Kobayashi, and H. Munekata, “Photoinduced precession of magnetization in ferromagnetic (Ga,Mn)As,” Phys. Rev. Lett. 100, 067202 (2008). [CrossRef]
  38. E. Rozkotová, P. Němec, P. Horodyská, D. Sprinzl, F. Trojánek, P. Malý, V. Novák, K. Olejník, M. Cukr, and T. Jungwirth, “Light-induced magnetization precession in GaMnAs,” Appl. Phys. Lett. 92, 122507 (2008). [CrossRef]
  39. G. V. Astakhov, A. V. Kimel, G. M. Schott, A. A. Tsvetkov, A. Kirilyuk, D. R. Yakovlev, G. Karczewski, W. Ossau, G. Schmidt, L. W. Molenkamp, and Th. Rasing, “Magnetization manipulation in (Ga,Mn)As by subpicosecond optical excitation,” Appl. Phys. Lett. 86, 152506 (2005). [CrossRef]
  40. K. C. Hall, J. P. Zahn, A. Gamouras, S. March, J. L. Robb, X. Liu, and J. K. Furdyna, “Ultrafast optical control of coercivity in GaMnAs,” Appl. Phys. Lett. 93, 032504 (2008). [CrossRef]
  41. A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer, “Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses,” Phys. Rev. Lett. 105, 117204 (2010). [CrossRef]
  42. H.-Y. Hao and H. J. Maris, “Dispersion of the long-wavelength phonons in Ge, Si, GaAs, quartz, and sapphire,” Phys. Rev. B 63, 224301 (2001). [CrossRef]
  43. R. Lang, A. Winter, H. Pascher, H. Krenn, X. Liu, and J. K. Furdyna, “Polar Kerr effect studies of Ga1−xMnxAs epitaxial films,” Phys. Rev. B 72, 024430 (2005). [CrossRef]
  44. G. P. Moore, J. Ferré, A. Mougin, M. Moreno, and L. Däweritz, “Magnetic anisotropy and switching process in diluted Ga1−xMnxAs magnetic semiconductor films,” J. Appl. Phys. 94, 4530–4534 (2003). [CrossRef]
  45. X. Liu, W. L. Lim, L. V. Titova, M. Dobrowolska, J. K. Furdyna, M. Kutrowski, and T. Wojtowicz, “Perpendicular magnetization reversal, magnetic anisotropy, multistep spin switching, and domain nucleation and expansion in Ga1−xMnxAs films,” J. Appl. Phys. 98, 063904 (2005). [CrossRef]
  46. G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B 49, 15046–15054 (1994). [CrossRef]
  47. O. B. Wright, B. Perrin, O. Matsuda, and V. E. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B 64, 081202 (2001). [CrossRef]
  48. X. Liu, Y. Sasaki, and J. K. Furdyna, “Ferromagnetic resonance in Ga1−xMnxAs: effects of magnetic anisotropy,” Phys. Rev. B 67, 205204 (2003). [CrossRef]
  49. T. Shono, T. Hasegawa, T. Fukumura, F. Matsukura, and H. Ohno, “Observation of magnetic domain structure in a ferromagnetic semiconductor (Ga,Mn)As with a scanning Hall probe microscope,” Appl. Phys. Lett. 77, 1363–1365 (2000). [CrossRef]
  50. H.-Y. Hao and H. J. Maris, “Experiments with acoustic solitons in crystalline solids,” Phys. Rev. B 64, 064302 (2001). [CrossRef]
  51. V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Commun. 278, 104–109 (2007). [CrossRef]
  52. V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, and A. K. Zvezdin, “Magnetooptical properties of perforated metallic films,” J. Magn. Magn. Mater. 310, e843–e845 (2007). [CrossRef]
  53. V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys.: Conf. Ser. 200, 092003 (2010). [CrossRef]
  54. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: the scattering-matrix method,” J. Exp. Theor. Phys. 110, 816–824 (2010). [CrossRef]
  55. G. S. Krinchik and V. A. Artem’ev, “Magneto-optical properties of Ni, Co, and Fe in the ultraviolet visible and infrared parts of spectrum,” Sov. Phys. JETP 26, 1080–1085 (1968).
  56. A. V. Druzhinin, I. D. Lobov, V. M. Mayevskiy, and G. Bolotin, “Transverse magnetooptical Kerr effect in transmission,” Phys. Met. Metallogr. 56, 58–65 (1983).
  57. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011). [CrossRef]
  58. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).
  59. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  60. V. M. Dubovik and L. A. Tosunyan, “Toroidal moments in the physics of electromagnetic and weak interactions,” Sov. J. Part. Nucl. 14, 504–519 (1983).
  61. A. N. Kalish, V. I. Belotelov, and A. K. Zvezdin, “Optical properties of toroidal media,” Proc. SPIE 6728, 67283D (2007). [CrossRef]
  62. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26, 1594–1598 (2009). [CrossRef]
  63. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999). [CrossRef]
  64. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002). [CrossRef]
  65. M. Neviere, E. Popov, and R. Reinisch, “Electromagnetic resonances in linear and nonlinear optics: phenomenological study of grating behavior through the poles and zeros of the scattering operator,” J. Opt. Soc. Am. A 12, 513–523 (1995). [CrossRef]
  66. N. Chateau and J. P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11, 1321–1331 (1994). [CrossRef]
  67. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  68. L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A: Pure Appl. Opt. 5, 345–355 (2003). [CrossRef]
  69. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]
  70. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003). [CrossRef]
  71. M. Sarrazin and J. P. Vigneron, “Bounded modes to the rescue of optical transmission,” Europhys. News 38(3), 27–31(2007). [CrossRef]
  72. A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79, 195414 (2009). [CrossRef]
  73. A. B. Akimov, A. S. Vengurlekar, T. Weiss, N. A. Gippius, and S. G. Tikhodeev, “Surface plasmon polaritons in metallo-dielectric meander-type gratings,” JETP Lett. 90, 355–358 (2009). [CrossRef]
  74. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928–936 (1935). [CrossRef]
  75. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Giant magnetooptical orientational effect in plasmonic heterostructures,” Opt. Lett. 34, 398–400 (2009). [CrossRef]
  76. G. S. Krinchik and E. A. Gan’shina, “Quadratic magnetooptical reflection effects in ferromagnets,” Sov. Phys. JETP 38, 983–989 (1974).
  77. C. N. Afonso and F. Briones, “Even magneto-optical effects in ferromagnetic transition metals,” J. Phys. F: Met. Phys. 10, 1253–1260 (1980). [CrossRef]
  78. S. V. Halilov and Y. A. Uspenskii, “Effects of degeneracy removal on optical and magneto-optical properties of 3d ferromagnetic metals,” J. Phys. Condens. Matter 4, 1299–1310 (1992). [CrossRef]
  79. A. Hessel and A. A. Oliner, “A new theory of wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965). [CrossRef]
  80. V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects at the Rayleigh-Wood and plasmon anomalies,” Proc. SPIE 6728, 67281M (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited