OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A146–A153

Oscillatory acoustic phonon relaxation of excitons in quantum dot molecules

Juan E. Rolon, Kushal C. Wijesundara, Sergio E. Ulloa, Allan S. Bracker, Daniel Gammon, and Eric A. Stinaff  »View Author Affiliations


JOSA B, Vol. 29, Issue 2, pp. A146-A153 (2012)
http://dx.doi.org/10.1364/JOSAB.29.00A146


View Full Text Article

Enhanced HTML    Acrobat PDF (757 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study electrically tunable self-assembled InAs quantum dot molecules through photoluminescence (PL) and time-resolved PL measurements. For the model we assume quantum dots with cylindrical symmetry, for which the confinement potentials have been modeled as narrow quantum wells in the growth and in-plane directions matched to parabolic potentials. We focus on the hole scattering rates by bulk acoustic phonons, as these rates are the leading contribution for the neutral indirect exciton relaxation rate when the electron localizes primarily on one dot. The hole–phonon scattering structure factor for acoustic phonons is found to contain a phase relationship between the phonon wave and the hole wave function, which can be tuned by an external electric field. The phase relationship leads to interference effects and tunable oscillatory relaxation rates of indirect excitons, in agreement with experiments.

© 2012 Optical Society of America

OCIS Codes
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(320.4240) Ultrafast optics : Nanosecond phenomena
(320.7080) Ultrafast optics : Ultrafast devices
(290.5825) Scattering : Scattering theory

History
Original Manuscript: October 4, 2011
Revised Manuscript: December 10, 2011
Manuscript Accepted: December 11, 2011
Published: February 3, 2012

Citation
Juan E. Rolon, Kushal C. Wijesundara, Sergio E. Ulloa, Allan S. Bracker, Daniel Gammon, and Eric A. Stinaff, "Oscillatory acoustic phonon relaxation of excitons in quantum dot molecules," J. Opt. Soc. Am. B 29, A146-A153 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-2-A146


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Phys. Rev. B 42, 8947–8951 (1990). [CrossRef]
  2. B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, “Rapid carrier relaxation in self-assembled InxGa1−xAs/GaAs quantum dots,” Phys. Rev. B 54, 11532–11538(1996). [CrossRef]
  3. P. Borri, W. Langbein, U. Woggon, M. Schwab, M. Bayer, S. Fafard, Z. Wasilewski, and P. Hawrylak, “Exciton dephasing in quantum dot molecules,” Phys. Rev. Lett. 91, 267401 (2003). [CrossRef]
  4. J. I. Climente, A. Bertoni, G. Goldoni, and E. Molinari, “Phonon-induced electron relaxation in weakly confined single and coupled quantum dots,” Phys. Rev. B 74, 035313 (2006). [CrossRef]
  5. J. I. Climente, A. Bertoni, G. Goldoni, and E. Molinari, “Directionality of acoustic-phonon emission in weakly confined semiconductor quantum dots,” Phys. Rev. B 75, 245330 (2007). [CrossRef]
  6. J. E. Rolon, “Coherent exciton phenomena in quantum dot molecules,” Ph.D. thesis (Ohio University, 2011).
  7. K. C. Wijesundara, J. E. Rolon, S. E. Ulloa, A. S. Bracker, D. Gammon, and E. A. Stinaff, “Tunable exciton relaxation in vertically coupled semiconductor InAs quantum dots,” Phys. Rev. B 84, 081404(R) (2011). [CrossRef]
  8. E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, Science 311, 636–639 (2006). [CrossRef]
  9. A. O. Govorov, “Spin-Förster transfer in optically excited quantum dots,” Phys. Rev. B 71, 155323 (2005). [CrossRef]
  10. A. Nazir, B. W. Lovett, S. D. Barrett, J. H. Reina, and G. A. D. Briggs, “Anticrossings in Förster coupled quantum dots,” Phys. Rev. B 71, 045334 (2005). [CrossRef]
  11. S. M. Reimann and M. Manninen, “Electronic structure of quantum dots,” Rev. Mod. Phys. 74, 1283–1342(2002). [CrossRef]
  12. A. S. Bracker, M. Scheibner, M. F. Doty, E. A. Stinaff, I. V. Ponomarev, J. C. Kim, L. J. Whitman, T. L. Reinecke, and D. Gammon, “Engineering electron and hole tunneling with asymmetric InAs quantum dot molecules,” Appl. Phys. Lett. 89, 233110 (2006). [CrossRef]
  13. V. F. Gantmakher and Y. B. Levinson, Carrier Scattering in Metals and Semiconductors, Modern Problems in Condensed Matter Sciences (Elsevier Science, 1987).
  14. V. Mlinar, M. Bozkurt, J. M. Ulloa, M. Ediger, G. Bester, A. Badolato, P. M. Koenraad, R. J. Warburton, and A. Zunger, “Structure of quantum dots as seen by excitonic spectroscopy versus structural characterization: using theory to close the loop,” Phys. Rev. B. 80, 165425 (2009). [CrossRef]
  15. E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures (Springer, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited