OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A17–A24

Sequential build-up of quantum-optical correlations

M. Mootz, M. Kira, and S. W. Koch  »View Author Affiliations

JOSA B, Vol. 29, Issue 2, pp. A17-A24 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (483 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The build-up dynamics of quantum-optical correlations in a Jaynes–Cummings model for semiconductor quantum-dot systems is characterized using the cluster-expansion scheme. Assuming an excitation with a coherent state source under strong- and weak-coupling conditions, it is found that higher-order correlations are sequentially generated. Even though the influence of dephasing hinders their development, significant correlations build up even in the presence of strong dissipation showing that quantum-spectroscopy studies are possible even in interacting many-body systems like semiconductors.

© 2012 Optical Society of America

OCIS Codes
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.5580) Quantum optics : Quantum electrodynamics

Original Manuscript: September 30, 2011
Revised Manuscript: November 22, 2011
Manuscript Accepted: November 23, 2011
Published: January 25, 2012

M. Mootz, M. Kira, and S. W. Koch, "Sequential build-up of quantum-optical correlations," J. Opt. Soc. Am. B 29, A17-A24 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Jaynes and F. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963). [CrossRef]
  2. H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691–695(1977). [CrossRef]
  3. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000). [CrossRef]
  4. J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, “Periodic spontaneous collapse and revival in a simple quantum model,” Phys. Rev. Lett. 44, 1323–1326 (1980). [CrossRef]
  5. G. Rempe, H. Walther, and N. Klein, “Observation of quantum collapse and revival in a one-atom maser,” Phys. Rev. Lett. 58, 353–356 (1987). [CrossRef]
  6. H. J. Carmichael, “Photon antibunching and squeezing for a single atom in a resonant cavity,” Phys. Rev. Lett. 55, 2790–2793 (1985). [CrossRef]
  7. M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, “Quantum Rabi oscillation: A direct test of field quantization in a cavity,” Phys. Rev. Lett. 76, 1800–1803 (1996). [CrossRef]
  8. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004). [CrossRef]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004). [CrossRef]
  10. I. Schuster, A. Kubanek, A. Fuhrmanek, T. Puppe, P. W. H. Pinkse, K. Murr, and G. Rempe, “Nonlinear spectroscopy of photons bound to one atom,” Nature Mater. 4, 382–385 (2008). [CrossRef]
  11. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef]
  12. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000). [CrossRef]
  13. W. Hoyer, M. Kira, S. W. Koch, H. Stolz, S. Mosor, J. Sweet, C. Ell, G. Khitrova, and H. M. Gibbs, “Entanglement between a photon and a quantum well,” Phys. Rev. Lett. 93, 067401 (2004). [CrossRef]
  14. M. Kira and S. W. Koch, “Many-body correlations and excitonic effects in semiconductor spectroscopy,” Prog. Quantum Electron. 30, 155–296 (2006). [CrossRef]
  15. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999). [CrossRef]
  16. S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs, “Semiconductor excitons in new light,” Nature Mater. 5, 523–531 (2006). [CrossRef]
  17. T. Feldtmann, L. Schneebeli, M. Kira, and S. W. Koch, “Quantum theory of light emission from a semiconductor quantum dot,” Phys. Rev. B 73, 155319 (2006).
  18. N. Baer, C. Gies, J. Wiersig, and F. Jahnke, “Luminescence of a semiconductor quantum dot system,” Eur. Phys. J. B 50, 411–418 (2006). [CrossRef]
  19. K. J. Ahn, J. Förstner, and A. Knorr, “Resonance fluorescence of semiconductor quantum dots: signatures of the electron-phonon interaction,” Phys. Rev. B 71, 153309 (2005).
  20. M. Kira and S. W. Koch, “Cluster-expansion representation in quantum optics,” Phys. Rev. A 78, 022102 (2008). [CrossRef]
  21. M. Kira, S. W. Koch, R. P. Smith, A. E. Hunter, and S. T. Cundiff, “Quantum spectroscopy with Schrödinger-cat states,” Nature Phys. 7, 799–804 (2011). [CrossRef]
  22. L. Schneebeli, M. Kira, and S. W. Koch, “Characterization of strong light-matter coupling in semiconductor quantum-dot microcavities via photon-statistics spectroscopy,” Phys. Rev. Lett. 101, 097401 (2008). [CrossRef]
  23. L. Schneebeli, M. Kira, and S. W. Koch, “Microscopic theory of squeezed-light emission in strong-coupling semiconductor quantum-dot systems,” Phys. Rev. A 80, 033843 (2009). [CrossRef]
  24. F. Schwabl, Statistical Mechanics, 2nd ed. (Springer-Verlag, 2006).
  25. G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976). [CrossRef]
  26. M. Kira and S. W. Koch, Semiconductor Quantum Optics, 1st ed. (Cambridge University, 2011).
  27. J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, “Periodic spontaneous collapse and revival in a simple quantum model,” Phys. Rev. Lett. 44, 1323–1326 (1980). [CrossRef]
  28. G. Rempe, H. Walther, and N. Klein, “Observation of quantum collapse and revival in a one-atom maser,” Phys. Rev. Lett. 58, 353–356 (1987). [CrossRef]
  29. D. Walls and G. Milburn, Quantum Optics, 2nd ed. (Springer-Verlag, 2008).
  30. M. Richter, A. Carmele, A. Sitek, and A. Knorr, “Few-photon model of the optical emission of semiconductor quantum dots,” Phys. Rev. Lett. 103, 087407 (2009). [CrossRef]
  31. J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009). [CrossRef]
  32. C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A 75, 013803 (2007). [CrossRef]
  33. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990). [CrossRef]
  34. M. Kira and S. W. Koch, “Quantum-optical spectroscopy of semiconductors,” Phys. Rev. A 73, 013813 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited