OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A6–A16

Electromagnetically induced transparency from electron spin coherences in semiconductor quantum wells [Invited]

Hailin Wang and Shannon O’Leary  »View Author Affiliations

JOSA B, Vol. 29, Issue 2, pp. A6-A16 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (712 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we review our recent experimental studies on electromagnetically induced transparency (EIT) from electron spin coherences in semiconductor quantum wells. Coherent Raman resonances, manifestations of EIT from electron spin coherences at relatively low pump intensities, were demonstrated in both V-type and Λ-type three-level systems via heavy-hole exciton and trion transitions in undoped and doped quantum wells, respectively. Coherent Raman resonances from electron spin coherences via light-hole transitions were also demonstrated in a waveguide geometry that enables a long optical interaction length as well as a large absorption coefficient. Experimental approaches that can avoid or reduce detrimental many-body effects in quantum wells are suggested for the realization of nearly ideal EIT processes.

© 2012 Optical Society of America

OCIS Codes
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(300.6470) Spectroscopy : Spectroscopy, semiconductors

Original Manuscript: October 4, 2011
Manuscript Accepted: November 29, 2011
Published: January 25, 2012

Virtual Issues
(2012) Advances in Optics and Photonics

Hailin Wang and Shannon O’Leary, "Electromagnetically induced transparency from electron spin coherences in semiconductor quantum wells [Invited]," J. Opt. Soc. Am. B 29, A6-A16 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996). [CrossRef]
  2. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997). [CrossRef]
  3. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
  4. M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003). [CrossRef]
  5. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  6. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef]
  7. S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992). [CrossRef]
  8. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  9. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999). [CrossRef]
  10. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999). [CrossRef]
  11. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001). [CrossRef]
  12. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001). [CrossRef]
  13. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001). [CrossRef]
  14. M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837–841 (2005). [CrossRef]
  15. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005). [CrossRef]
  16. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423, 731–734 (2003). [CrossRef]
  17. C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003). [CrossRef]
  18. P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: Use of a single driving laser,” Physi. Rev. Lett. 97, 113602 (2006). [CrossRef]
  19. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008). [CrossRef]
  20. T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S. Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005). [CrossRef]
  21. X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008). [CrossRef]
  22. M. Phillips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89, 186401 (2002). [CrossRef]
  23. M. C. Phillips and H. Wang, “Exciton spin coherence and electromagnetically induced transparency in the transient optical response of GaAs quantum wells,” Phys. Rev. B 69, 115337 (2004). [CrossRef]
  24. M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003). [CrossRef]
  25. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2009).
  26. D. S. Chemla and J. Shah, “Many-body and correlation effects in semiconductors,” Nature 411, 549–557 (2001). [CrossRef]
  27. V. M. Axt and T. Kuhn, “Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics,” Rep. Prog. Phys. 67, 433–512 (2004). [CrossRef]
  28. G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000). [CrossRef]
  29. J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005). [CrossRef]
  30. J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “Ac stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005). [CrossRef]
  31. S. G. Carter, V. Birkedal, C. S. Wang, L. A. Coldren, A. V. Maslov, D. S. Citrin, and M. S. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005). [CrossRef]
  32. M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28, 831–833 (2003). [CrossRef]
  33. M. Lindberg and R. Binder, “Dark states in coherent semiconductor spectroscopy,” Phys. Rev. Lett. 75, 1403–1406 (1995). [CrossRef]
  34. S. Marcinkevicius, A. Gushterov, and J. P. Reithmaier, “Transient electromagnetically induced transparency in self-assembled quantum dots,” Appl. Phys. Lett. 92, 041113 (2008). [CrossRef]
  35. C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003). [CrossRef]
  36. W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68, 053802 (2003). [CrossRef]
  37. S. Michael, W. W. Chow, and H. C. Schneider, “Coulomb corrections to the slowdown factor in quantum-dot quantum coherence,” Appl. Phys. Lett. 89, 181114 (2006). [CrossRef]
  38. D. Barettin, J. Houmark, B. Lassen, M. Willatzen, T. R. Nielsen, J. Mork, and A. P. Jauho, “Optical properties and optimization of electromagnetically induced transparency in strained InAs/GaAs quantum dot structures,” Phys. Rev. B 80, 235304 (2009). [CrossRef]
  39. T. R. Nielsen, A. Lavrinenko, and J. Mork, “Slow light in quantum dot photonic crystal waveguides,” Appl. Phys. Lett. 94, 113111 (2009). [CrossRef]
  40. J. Houmark, T. R. Nielsen, J. Mork, and A. P. Jauho, “Comparison of electromagnetically induced transparency schemes in semiconductor quantum dot structures: Impact of many-body interactions,” Phys. Rev. B 79, 115420 (2009). [CrossRef]
  41. P. Lunnemann and J. Mork, “Reducing the impact of inhomogeneous broadening on quantum dot based electromagnetically induced transparency,” Appl. Phys. Lett. 94, 071108(2009). [CrossRef]
  42. J. M. Kikkawa and D. D. Awschalom, “Resonant spin amplification in n-type GaAs,” Phys. Rev. Lett. 80, 4313–4316 (1998). [CrossRef]
  43. J. Kikkawa, I. Smorchkova, N. Samarth, and D. Awschalom, “Room-temperature spin memory in two-dimensional electron gases,” Science 277, 1284–1287 (1997). [CrossRef]
  44. H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, and A. Yacoby, “Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs,” Nat. Phys. 7, 109–113 (2011). [CrossRef]
  45. K.-M. C. Fu, C. Santori, C. Stanley, M. C. Holland, and Y. Yamamoto, “Coherent population trapping of electron spins in a high-purity n-type GaAs semiconductor,” Phys. Rev. Lett. 95, 187405 (2005). [CrossRef]
  46. M. Sladkov, A. U. Chaubal, M. P. Bakker, A. R. Onur, D. Reuter, A. D. Wieck, and C. H. van der Wal, “Electromagnetically induced transparency with an ensemble of donor-bound electron spins in a semiconductor,” Phys. Rev. B 82, 121308 (2010). [CrossRef]
  47. T. Wang, R. Rajapakse, and S. F. Yelin, “Electromagnetically induced transparency and slow light with n-doped GaAs,” Opt. Commun. 272, 154–160 (2007). [CrossRef]
  48. A. Imamoglu, “Electromagnetically induced transparency with two dimensional electron spins,” Opt. Commun. 179, 179–182 (2000). [CrossRef]
  49. T. Li, H. Wang, N. Kwong, and R. Binder, “Electromagnetically induced transparency via electron spin coherence in a quantum well waveguide,” Opt. Express 11, 3298–3303 (2003). [CrossRef]
  50. S. Sarkar, P. Palinginis, P.-C. Ku, C. J. Chang-Hasnain, N. H. Kwong, R. Binder, and H. Wang, “Inducing electron spin coherence in GaAs quantum well waveguides: spin coherence without spin precession,” Phys. Rev. B 72, 035343 (2005). [CrossRef]
  51. P. Palinginis and H. Wang, “Coherent Raman resonance from electron spin coherence in GaAs quantum wells,” Phys. Rev. B 70, 153307 (2004). [CrossRef]
  52. S. O’Leary, H. Wang, and J. P. Prineas, “Coherent Zeeman resonance from electron spin coherence in a mixed-type GaAs/AlAs quantum well,” Opt. Lett. 32, 569–571 (2007). [CrossRef]
  53. S. Crooker, D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997). [CrossRef]
  54. P. Palinginis and H. Wang, “Vanishing and emerging of absorption quantum beats from electron spin coherence in GaAs quantum wells,” Phys. Rev. Lett. 92, 037402 (2004). [CrossRef]
  55. R. Hannak, M. Oestreich, and A. Heberle, “Electron g factor in quantum wells determined by spin quantum beats,” Solid State Commun. 93, 313–317 (1995). [CrossRef]
  56. H. Wang, M. Jiang, and D. Steel, “Measurement of phonon-assisted migration of localized excitons in GaAs/AlGaAs multiple-quantum-well structures,” Phys. Rev. Lett. 65, 1255–1258 (1990). [CrossRef]
  57. J. Hegarty and M. D. Sturge, “Studies of exciton localization in quantum-well structures by nonlinear-optical techniques,” J. Opt. Soc. Am. B 2, 1143–1154 (1985). [CrossRef]
  58. J. S. Weiner, D. S. Chemla, D. A. B. Miller, H. A. Haus, A. C. Gossard, W. Wiegmann, and C. A. Burrus, “Highly anisotropic optical properties of single quantum well waveguides,” Appl. Phys. Lett. 47, 664–667 (1985). [CrossRef]
  59. H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261–1264 (1993). [CrossRef]
  60. J. M. Shacklette and S. T. Cundiff, “Role of excitation-induced shift in the coherent optical response of semiconductors,” Phys. Rev. B 66, 045309 (2002). [CrossRef]
  61. K. Kheng, R. T. Cox, M. Y. d’ Aubigné, F. Bassani, K. Saminadayar, and S. Tatarenko, “Observation of negatively charged excitons X− in semiconductor quantum wells,” Phys. Rev. Lett. 71, 1752–1755 (1993). [CrossRef]
  62. I. Bar-Joseph, “Trions in GaAs quantum wells,” Semicond. Sci. Technol. 20, R29–R39 (2005). [CrossRef]
  63. S. O’Leary and H. Wang, “Manipulating nonlinear optical responses from spin-polarized electrons in a two-dimensional electron gas via exciton injection,” Phys. Rev. B 77, 165309 (2008). [CrossRef]
  64. C. Phelps, T. Sweeney, R. T. Cox, and H. Wang, “Ultrafast coherent electron spin flip in a modulation-doped CdTe quantum well,” Phys. Rev. Lett. 102, 237402 (2009). [CrossRef]
  65. I. Galbraith, P. Dawson, and C. T. Foxon, “Optical nonlinearities in mixed type I-type II GaAs/AlAs multiple quantum wells,” Phys. Rev. B 45, 13499 (1992). [CrossRef]
  66. C. Phelps, J. Prineas, and H. Wang, “Excitonic nonlinear optical response from correlation-enhanced tunneling in mixed-type GaAs quantum wells,” Phys. Rev. B 83, 153302 (2011). [CrossRef]
  67. A. Honold, L. Schultheis, J. Kuhl, and C. W. Tu, “Collision broadening of two-dimensional excitons in a GaAs single quantum well,” Phys. Rev. B 40, 6442–6445 (1989). [CrossRef]
  68. N. H. Kwong, S. Schumacher, and R. Binder, “Electron-spin beat susceptibility of excitons in semiconductor quantum wells,” Phys. Rev. Lett. 103, 056405 (2009). [CrossRef]
  69. P. R. Hemmer, A. V. Turukhin, M. S. Shahriar, and J. A. Musser, “Raman-excited spin coherences in nitrogen-vacancy color centers in diamond,” Opt. Lett. 26, 361–363 (2001). [CrossRef]
  70. C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited