OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A60–A68

Theoretical approach to the excitonic response of GaAs nanomembranes in the averaged-strain approximation

Baijie Gu and Rolf Binder  »View Author Affiliations

JOSA B, Vol. 29, Issue 2, pp. A60-A68 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



GaAs nanomembranes are thin crystalline GaAs semiconductor structures that can be bent or otherwise elastically deformed from their natural shape. We present a microscopic theory of the linear optical response of such deformed structures. Our approach combines conventional structural analysis (based on the theory of elasticity), the valence band Hamiltonians (Luttinger and Pikus–Bir) for III–V semiconductors, and the semiconductor Hamiltonian including Coulomb interaction. We formulate the general equation of motion for the interband polarization for thin elastically deformed nanomembranes. A simple limiting case results from the single-subband approximation and the averaged-strain approximation. Within this approximation scheme, we present numerical results for excitonic spectra for a cylindrically deformed membrane.

© 2012 Optical Society of America

OCIS Codes
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

Original Manuscript: October 4, 2011
Manuscript Accepted: November 22, 2011
Published: January 26, 2012

Baijie Gu and Rolf Binder, "Theoretical approach to the excitonic response of GaAs nanomembranes in the averaged-strain approximation," J. Opt. Soc. Am. B 29, A60-A68 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Ohtani, K. Kishimoto, K. Kubota, S. Saravanan, Y. Sato, S. Nashima, P. Vaccaro, T. Aida, and M. Hosoda, “Uniaxial-strain-induced transition from type-II to type-I band configuration of quantum well microtubes,” Physica E 21, 732–736 (2004). [CrossRef]
  2. Y. Sun, S. Kim, I. Adesida, and J. A. Rogers, “Bendable GaAs metal-semiconductor field-effect transistors formed with printed GaAs wire arrays on plastic substrates,” Appl. Phys. Lett. 87, 083501 (2005). [CrossRef]
  3. Y. Sun, E. Menard, and J. A. Rogers, “Gigahertz operation in flexible transistors on plastic substrates,” Appl. Phys. Lett. 88, 183509 (2006). [CrossRef]
  4. S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett. 88, 111120 (2006). [CrossRef]
  5. L. Zhang, L. Dong, and B. J. Nelson, “Bending and buckling of rolled-up SiGe/Si microtubes using nanorobotic manipulation,” Appl. Phys. Lett. 92, 243102 (2008). [CrossRef]
  6. H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008). [CrossRef]
  7. A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. Thurmer, M. Benyoucef, and O. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett. 93, 094106 (2008). [CrossRef]
  8. Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, “Fabrication, self-assembly, and properties of ultrathin AIN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets,” ACS Nano 3, 1663–1668 (2009). [CrossRef]
  9. P. Cendula, S. Kiravittaya, Y. Mei, C. Deneke, and O. Schmidt, “Bending and wrinkling as competing relaxation pathways for strained free-hanging films,” Phys. Rev. B 79, 085429 (2009). [CrossRef]
  10. C. Deneke, A. Malachias, S. Kiravittaya, M. Benyoucef, T. Metzger, and O. Schmidt, “Strain states in a quantum well embedded into a rolled-up microtube: x-ray and photoluminescence studies,” Appl. Phys. Lett. 96, 143101 (2010). [CrossRef]
  11. Y. Mei, S. Kiravittaya, S. Harazim, and O. G. Schmidt, “Principles and applications of micro and nanoscale wrinkles,” Mat. Sci. Eng. R 70, 209–224 (2010). [CrossRef]
  12. Membranes can be formally defined as very thin plates without flexural resistance [62], but we will use the term in a loose way denoting thin plates, and we allow for thin plates sandwiched by other materials to be included in the definition of membranes.
  13. M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16, 276–287 (2010). [CrossRef]
  14. T. C. Chong and C. G. Fonstad, “Theoretical gain of strained-layer semiconductor lasers in the large strain regime,” IEEE J. Quantum Electron. 25, 171–178 (1989). [CrossRef]
  15. T. Chen, L. Eng, B. Zhao, Y. Zhuang, S. Sanders, and H. Morkoc, “Submilliamp threshold InGaAs-GaAs strained layer quantum-well laser,” IEEE J. Quantum Electron. 26, 1183–1190 (1990). [CrossRef]
  16. S. W. Corzine, R. H. Yan, and L. A. Coldren, “Theoretical gain in strained InGaAs/AlGaAs quantum wells including valence-band mixing effects,” Appl. Phys. Lett. 57, 2835–2837 (1990). [CrossRef]
  17. S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B 43, 9649–9661 (1991). [CrossRef]
  18. S. Offsey, L. Lester, W. Schaff, and L. Eastman, “High-speed modulation of strained-layer InGaAs-GaAs-AlGaAs ridge waveguide multiple quantum well lasers,” Appl. Phys. Lett. 58, 2336–2338 (1991). [CrossRef]
  19. D. Nichols and P. Bhattacharya, “Differential gain in InP-based strained layer multiple quantum well lasers,” Appl. Phys. Lett. 61, 2129–2131 (1992). [CrossRef]
  20. C.-K. Sun, H. K. Choi, K. A. Wang, and J. G. Fujimoto, “Femtosecond gain dynamics in InGaAs/AIGaAs strained-layer single-quantum-well diode lasers,” Appl. Phys. Lett. 63, 96–98 (1993). [CrossRef]
  21. D. Ahn and S. L. Chuang, “The theory of strained-layer quantum-well lasers with bandgap renormalization,” IEEE J. Quantum Electron. 30, 350–365 (1994). [CrossRef]
  22. S. L. Chuang and C. S. Chang, “Effective-mass Hamiltonian for strained wurtzite GaN and analytical solutions,” Appl. Phys. Lett. 68, 1657–1659 (1996). [CrossRef]
  23. D. Ahn, S. Yoon, S. Chuang, and C.-S. Chang, “Theory of optical gain in strained-layer quantum wells within the 6×6 Luttinger-Kohn model,” J. Appl. Phys. 78, 2489–2497 (1995). [CrossRef]
  24. S.-H. Park and D. Ahn, “Many-body effects on optical gain in strained hexagonal and cubic GaN/AlGaN quantum well lasers,” Appl. Phys. Lett. 71, 398–400 (1997). [CrossRef]
  25. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulatioin-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72, 211–213 (1998). [CrossRef]
  26. Z. Liu, S. Pau, K. Syassen, and J. Kuhl, “Photoluminescence and reflectance studies of exciton transitions in wurtzite GaN under pressure,” Phys. Rev. B 58, 6696–6699 (1998). [CrossRef]
  27. B. Lane, Z. Wu, A. Stein, J. Diaz, and M. Razeghi, “InAsSb/InAsP strained-layer superlattice injection lasers operating at 4.0 μm grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 74, 3438–3440 (1999). [CrossRef]
  28. J. Coleman, “Strained-layer InGaAs quantum-well heterostructure lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1008–1013(2000). [CrossRef]
  29. T. Chung, G. Walter, and J. N. Holonyak, “Coupled strained-layer InGaAs quantum-well improvement of an InAs quantum dot AlGaAs-GaAs-InGaAs-InAs heterostructure laser,” Appl. Phys. Lett. 79, 4500–4502 (2001). [CrossRef]
  30. E. P. O’Reilly, “Valence band engineering in strained-layer structures,” Semicond. Sci. Technol. 4, 121–137 (1989). [CrossRef]
  31. S. Chuang, Physics of Optoelectronic Devices (Wiley-Interscience, 1995).
  32. W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials, 2nd ed. (Springer, 1999).
  33. G. P. Agrawal and N. K. Dutta, Semiconductors Lasers, 2nd ed. (Kluwer Academic, 1993).
  34. H. Shen, M. Wraback, J. Pamulapati, M. Dutta, P. G. Newman, A. Ballato, and Y. Lu, “Normal incidence high contrast multiple quantum well light modulator based on polarization rotation,” Appl. Phys. Lett. 62, 2908–2910 (1993). [CrossRef]
  35. H. Shen, M. Wraback, J. Pamulapati, P. G. Newman, M. Dutta, Y. Lu, and H. C. Kuo, “Optical anisotropy in GaAs/AlxGa1−xAs multiple quantum wells under thermally induced uniaxial strain,” Phys. Rev. B 47, 13933–13936 (1993). [CrossRef]
  36. H. Shen, J. Pamulapati, M. Wraback, M. Taysing-Lara, M. Dutta, H. C. Kuo, and Y. Lu, “High contrast optical modulator based on electrically tunable polarization rotation and phase retardation in uniaxially strained (100) multiple quantum wells,” IEEE Photon. Technol. Lett. 6, 700–702 (1994). [CrossRef]
  37. M. Wraback, H. Shen, J. Pamulapati, M. Dutta, P. G. Newman, M. Taysing-Lara, and Y. Lu, “Femtosecond studies of excitonic optical non-linearities in GaAs/AlxGa1−xAs multiple quantum wells under in-plane uniaxial strain,” Surf. Sci. 305, 238–242(1994). [CrossRef]
  38. M. Wraback, H. Shen, J. Pamulapati, P. G. Newman, and M. Dutta, “Polarization dependent excitonic optical nonlinearities in GaAs/AlGaAs multiple quantum wells under anisotropic in-plane strain,” Phys. Rev. Lett. 74, 1466–1469 (1995). [CrossRef]
  39. M. Wraback, H. Shen, S. Liang, C. R. Gorla, and Y. Lu, “High contrast, ultrafast optically addressed ultraviolet light modulator based upon optical anisotropy in ZnO films grown on R-plane sapphire,” Appl. Phys. Lett. 74, 507–509 (1999). [CrossRef]
  40. D. W. Snoke, V. Negoita, and K. Eberl, “Energy shifts of indirect excitons in coupled quantum wells,” J. Luminesc. 87–89, 157–161 (2000). [CrossRef]
  41. N. W. Sinclair, J. K. Wuenschell, Z. Vörös, B. Nelsen, D. W. Snoke, M. H. Szymanska, A. Chin, and J. Keeling, “Strain-induced darkening of trapped excitons in coupled quantum wells at low temperature,” Phys. Rev. B 83, 245304 (2011). [CrossRef]
  42. J. Luttinger, “Quantum theory of cyclotron resonance in semiconductors: general theory,” Phys. Rev. 102, 1030–1041 (1956). [CrossRef]
  43. G. Pikus and G. Bir, “Cyclotron and paramagnetic resonance in strained cyrstals,” Phys. Rev. Lett. 6, 103–105 (1961). [CrossRef]
  44. H. Hasegawa, “Theory of cyclotron resonance in strained silicon crystals,” Phys. Rev. 129, 1029–1040 (1963). [CrossRef]
  45. J. Hensel and G. Feher, “Cyclotron resonance experiments in uniaxially stressed silicon: valence band inverse mass parameters and deformation potentials,” Phys. Rev. 129, 1041–1062 (1963). [CrossRef]
  46. F. H. Pollak and M. Cardona, “Piezo-electroreflectance in Ge, GaAs and Si,” Phys. Rev. 172, 816–837 (1968). [CrossRef]
  47. L. D. Laude, F. H. Pollak, and M. Cardona, “Effects of uniaxial stress on the indirect exciton spectrum of silicon,” Phys. Rev. B 3, 2623–2636 (1971). [CrossRef]
  48. F. H. Pollak, “Effects of homogenous strain on the electronic and vibrational levels in semiconductors,” in Strained-Layer Superlattices: Physics, T. T. Pearsall, ed., Vol. 32 of Semiconductors and Semimetals (Academic, 1990), pp. 17–53.
  49. G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, “Exciton binding energy in quantum wells,” Phys. Rev. B 26, 1974–1979(1982). [CrossRef]
  50. K. S. Chan, “The effects of the hole subband mixing on the energies and oscillator strengths of excitons in a quantum well,” J. Phys. C: Solid State Phys. 19, L125–L130 (1986). [CrossRef]
  51. R. Eppenga, M. F. H. Schuurmans, and S. Colak, “New k·p theory for GaAs/Ga1−xAlxAs-type quantum wells,” Phys. Rev. B 36, 1554–1564 (1987). [CrossRef]
  52. W. Bardyszewski and D. Yevick, “Electroabsorption and electrorefraction effects in quantum-well modulators,” Phys. Rev. B 49, 5368–5378 (1994). [CrossRef]
  53. We neglect the electron-hole exchange effect, which is on the order of tens of micro electron volts and thus small compared to typical values of the broadening of exciton resonances in quasi-two-dimensional systems. Under certain circumstances, not considered in this paper, it can become important or even dominant in excitonic spectra, especially in quantum dots (see, e.g., Ref. [68]).
  54. G. Whitfield, “Theory of electron-phonon interactions,” Phys. Rev. 121, 720–734 (1961). [CrossRef]
  55. D. Nolte, W. Walukiewicz, and E. Haller, “Band-edge hydrostatic deformation potentials in III–V semiconductors,” Phys. Rev. Lett. 59, 501–504 (1987). [CrossRef]
  56. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999). [CrossRef]
  57. A. Love, A Treatise on the Mathemathical Theory of Elasticity, 4th ed. (Dover, 1944).
  58. S. Timoshenko and J. Goodier, Theory of Elasticity, 2nd ed. (McGraw-Hill, 1951).
  59. L. Landau and E. Lifshitz, Theory of Elasticity, 3rd ed.(Pergamon, 1986).
  60. D. R. Lovett, Tensor Properties of Crystals (Institute of Physics, 1989).
  61. G. D. C. Kuiken, “The symmetry of the stress tensor,” Ind. Eng. Chem. Res. 34, 3568–3572 (1995). [CrossRef]
  62. R. Szilard, Theories and Applications of Plate Analysis, 1st ed. (Wiley, 2004).
  63. J. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R181(1982). [CrossRef]
  64. J. L. Birman, “Theory of piezoelectric effect in the zincblende structure,” Phys. Rev. 111, 1510–1514 (1958). [CrossRef]
  65. D. Smith and C. Mailhiot, “Piezoelectric effects in strained-layer superlattices,” J. Appl. Phys. 63, 2717–2719 (1988). [CrossRef]
  66. L. Duggen, M. Willatzen, and B. Lassen, “Crystal orientation effects on the piezoelectric field of strained zinc-blende quantum-well structures,” Phys. Rev. B 78, 205323 (2008). [CrossRef]
  67. G. Bester, X. Wu, D. Vanderbilt, and A. Zunger, “Importance of second-order piezoelectric effects in zinc-blende semiconductors,” Phys. Rev. Lett. 96, 187602 (2006). [CrossRef]
  68. S. Seidl, M. Kroner, A. Högele, and K. Karrai, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited