OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A86–A94

Excitonic resonances as fingerprint of strong Coulomb coupling in graphene

T. Stroucken, J. H. Grönqvist, and S. W. Koch  »View Author Affiliations

JOSA B, Vol. 29, Issue 2, pp. A86-A94 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (624 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Within a self-consistent microscopic theory, the conditions for the existence of a strongly Coulomb-correlated phase in graphene is explored, and its fingerprints in the optical spectra are investigated. A second-order semimetal-to-insulator transition is predicted if the effective fine-structure constant exceeds the critical value 1/2. Above this value, the Coulomb interaction opens a gap in the quasiparticle spectrum that increases rapidly with increasing coupling strength. Energetically below the gap, the optical spectra are predicted to exhibit pronounced excitonic resonances that are superimposed on the Drude-like response of the filled graphene π-band. Experimental observation of these excitons could serve as a fingerprint for the existence of the Coulomb-correlated phase. Increasing the coupling constant results in a blueshift and increasing oscillator strength of the dominant resonance.

© 2012 Optical Society of America

Original Manuscript: September 27, 2011
Manuscript Accepted: November 29, 2011
Published: January 30, 2012

T. Stroucken, J. H. Grönqvist, and S. W. Koch, "Excitonic resonances as fingerprint of strong Coulomb coupling in graphene," J. Opt. Soc. Am. B 29, A86-A94 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005). [CrossRef]
  2. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438, 201–204 (2005). [CrossRef]
  3. R. S. Deacon, K.-C. Chuang, R. J. Nicholas, K. S. Novoselov, and A. K. Geim, “Cyclotron resonance study of the electron and hole velocity in graphene monolayers,” Phys. Rev. B 76, 081406 (2007). [CrossRef]
  4. Z. Jiang, E. A. Henriksen, L. C. Tung, Y.-J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, “Infrared spectroscopy of Landau levels of graphene,” Phys. Rev. Lett. 98, 197403 (2007). [CrossRef]
  5. S. Y. Zhou, G.-H. Gweon, and A. Lanzara, “Low energy excitations in graphite: the role of dimensionality and lattice defects,” Ann. Phys. 321, 1730 (2006). [CrossRef]
  6. A. Bostwick, T. Ohta, J. L. McChesney, T. Seyller, K. Horn, and E. Rotenberg, “Band structure and many body effects in graphene,” Eur. J. Phys. Special Topics 148, 5–13 (2007). [CrossRef]
  7. S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, “Substrate-induced bandgap opening in epitaxial graphene,” Nat. Mater. 6, 770–775 (2007). [CrossRef]
  8. J. González, F. Guinea, and M. A. H. Vozmediano, “Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction,” Phys. Rev. B 59, R2474 (1999). [CrossRef]
  9. D. E. Sheehy and J. Schmalian, “Quantum critical scaling in graphene,” Phys. Rev. Lett. 99, 226803 (2007). [CrossRef]
  10. L. Fritz, J. Schmalian, M. Müller, and S. Sachdev, “Quantum critical transport in clean graphene,” Phys. Rev. B 78, 085416 (2008). [CrossRef]
  11. A. Sinner and K. Ziegler, “Effect of the Coulomb interaction on the gap in monolayer and bilayer graphene,” Phys. Rev. B 82, 165453 (2010). [CrossRef]
  12. D. V. Khveshchenko, “Ghost excitonic insulator transition in layered graphite,” Phys. Rev. Lett. 87, 246802 (2001). [CrossRef]
  13. D. V. Khveshchenko and W. F. Shively, “Excitonic pairing between nodal fermions,” Phys. Rev. B 73, 115104 (2006). [CrossRef]
  14. V. Juričić, I. F. Herbut, and G. W. Semenoff, “Coulomb interaction at the metal—insulator critical point in graphene,” Phys. Rev. B 80, 081405 (2009). [CrossRef]
  15. J. E. Drut and T. A. Lähde, “Is graphene in vacuum an insulator?,” Phys. Rev. Lett. 102, 026802 (2009). [CrossRef]
  16. J. E. Drut and T. A. Lähde, “Lattice field theory simulations of graphene,” Phys. Rev. B 79, 165425 (2009). [CrossRef]
  17. L. Yang, J. Deslippe, C.-H. Park, M. L. Cohen, and S. G. Louie, “Excitonic effects on the optical response of graphene and bilayer graphene,” Phys. Rev. Lett. 103, 186802 (2009). [CrossRef]
  18. E. Malić, J. Maultzsch, S. Reich, and A. Knorr, “Excitonic absorption spectra of metallic single-walled carbon nanotubes,” Phys. Rev. B 82, 035433 (2010). [CrossRef]
  19. A. D. Güçlü, P. Potasz, and P. Hawrylak, “Excitonic absorption in gate-controlled graphene quantum dots,” Phys. Rev. B 82, 155445 (2010). [CrossRef]
  20. J. P. Reed, B. Uchoa, Y. I. Joe, Y. Gan, D. Casa, E. Fradkin, and P. Abbamonte, “The effective fine-structure constant of freestanding graphene measured in graphite,” Science 330, 805–808 (2010). [CrossRef]
  21. H. Min, R. Bistritzer, J.-J. Su, and A. H. MacDonald, “Room-temperature superfluidity in graphene bilayers,” Phys. Rev. B 78, 121401 (2008). [CrossRef]
  22. O. L. Berman, R. Y. Kezerashvili, and Y. E. Lozovik, “Collective properties of magnetobiexcitons in quantum wells and graphene superlattices,” Phys. Rev. B 78, 035135 (2008). [CrossRef]
  23. O. L. Berman, Y. E. Lozovik, and G. Gumbs, “Bose—Einstein condensation and superfluidity of magnetoexcitons in bilayer graphene,” Phys. Rev. B 77, 155433 (2008). [CrossRef]
  24. K. F. Mak, J. Shan, and T. F. Heinz, “Seeing many-body effects in single- and few-layer graphene: observation of two-dimensional saddle-point excitons,” Phys. Rev. Lett. 106, 046401 (2011). [CrossRef]
  25. D.-H. Chae, T. Utikal, S. Weisenburger, H. Giessen, K. v. Klitzing, M. Lippitz, and J. Smet, “Excitonic fano resonance in free-standing graphene,” Nano Lett. 11, 1379–1382 (2011). [CrossRef]
  26. E. Malic, T. Winzer, E. Bobkin, and A. Knorr, “Microscopic theory of absorption and ultrafast many-particle kinetics in graphene,” Phys. Rev. B 84, 205406 (2011). [CrossRef]
  27. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2009).
  28. J. H. Grönqvist, T. Stroucken, G. Berghäuser, and S. W. Koch, “Excitons in graphene and the influence of the dielectric environment,” arXiv: 1107.5653 (2011).
  29. T. Stroucken, J. H. Grönqvist, and S. W. Koch, “Optical response and ground state of graphene,” Phys. Rev. B 84, 205445 (2011). [CrossRef]
  30. P. R. Wallace, “The band theory of graphite,” Phys. Rev. 71, 622–634 (1947). [CrossRef]
  31. J. Sabio, F. Sols, and F. Guinea, “Variational approach to the excitonic phase transition in graphene,” Phys. Rev. B 82, 121413 (2010). [CrossRef]
  32. O. V. Gamayun, E. V. Gorbar, and V. P. Gusynin, “Gap generation and semimetal—insulator phase transition in graphene,” Phys. Rev. B 81, 075429 (2010). [CrossRef]
  33. J. E. Sipe, Department of Physics, University of Toronto, 60 St. George St., Toronto, Ontario, M5S 1A7, Canada (personal communication, 2010).
  34. O. V. Gamayun, E. V. Gorbar, and V. P. Gusynin, “Supercritical Coulomb center and excitonic instability in graphene,” Phys. Rev. B 80, 165429 (2009). [CrossRef]
  35. E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75, 205418 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited