OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 268–273

Noise-induced quantum correlations via quantum feedback control

Jie Song, Yan Xia, and Xiu-Dong Sun  »View Author Affiliations


JOSA B, Vol. 29, Issue 3, pp. 268-273 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000268


View Full Text Article

Enhanced HTML    Acrobat PDF (314 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study a physical system for creation of quantum correlations by quantum feedback control. The system is composed of two three-level atoms, each of which interacts with one of two coupled cavities. By appropriately choosing the feedback strength, we show that an arbitrary initial state can be deterministically driven to a steady-state that has a nonzero quantum discord or entanglement. It is also found that the effect of atomic spontaneous emission on quantum correlations is suppressed efficiently by increasing the frequency detuning.

© 2012 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: September 7, 2011
Revised Manuscript: October 9, 2011
Manuscript Accepted: October 26, 2011
Published: February 8, 2012

Citation
Jie Song, Yan Xia, and Xiu-Dong Sun, "Noise-induced quantum correlations via quantum feedback control," J. Opt. Soc. Am. B 29, 268-273 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-3-268


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997). [CrossRef]
  2. D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999). [CrossRef]
  3. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000). [CrossRef]
  4. J. W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001). [CrossRef]
  5. W. Y. Huo and G. L. Long, “Entanglement and squeezing in solid-state circuits,” J. New Phys. 10, 013026 (2008).
  6. H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002). [CrossRef]
  7. P. Giorda and M. G. A. Paris, “Gaussian quantum discord,” Phys. Rev. Lett. 105, 020503 (2010). [CrossRef]
  8. Y. H. Wang and H. S. Song, “Preparation of multi-atom specially entangled W-class state and splitting quantum information,” Chin. Sci. Bull. 54, 2599–2605 (2009).
  9. S. Maniscalco, F. Francica, R. L. Zaffino, N. Lo Gullo, and F. Plastina, “Protecting entanglement via the quantum Zeno effect,” Phys. Rev. Lett. 100, 090503 (2008). [CrossRef]
  10. Y. Li, J. Zhou, and H. Guo, “Effect of the dipole-dipole interaction for two atoms with different couplings in a non-Markovian environment,” Phys. Rev. A 79, 012309 (2009).
  11. D. F. Mundarain and M. Orszag, “Entanglement distillation with local common reservoirs,” Phys. Rev. A 79, 022306(2009).
  12. F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira, “Non-Markovian dynamics of quantum discord,” Phys. Rev. A 81, 052107 (2010).
  13. B. Bellomo, R. Lo Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Phys. Rev. Lett. 99, 160502 (2007). [CrossRef]
  14. J. Q. Liao, J. F. Huang, L. M. Kuang, and C. P. Sun, “Coherent excitation-energy transfer and quantum entanglement in a dimer,” Phys. Rev. A 82, 052109 (2010).
  15. B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101(2010).
  16. M. M. Ali, P. W. Chen, and H. S. Goan, “Decoherence-free subspace and disentanglement dynamics for two qubits in a common non-Markovian squeezed reservoir,” Phys. Rev. A 82, 022103 (2010).
  17. A. G. Dijkstra and Y. Tanimura, “Non-Markovian entanglement dynamics in the presence of system-bath coherence,” Phys. Rev. Lett. 104, 250401 (2010). [CrossRef]
  18. S. Das and G. S. Agarwal, “Protecting bipartite entanglement by quantum interferences,” Phys. Rev. A 81, 052341 (2010). [CrossRef]
  19. Y. Li, B. Luo, and H. Guo, “Entanglement and quantum discord dynamics of two atoms under practical feedback control,” Phys. Rev. A 84, 012316 (2011).
  20. Q. L. He, J. B. Xu, D. X. Yao, and Y. Q. Zhang, “Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord,” Phys. Rev. A 84, 022312 (2011).
  21. V. P. Belavkin, “Measurement, filtering and control in quantum open dynamical systems,” Rep. Math. Phys. 43, A405–A425 (1999). [CrossRef]
  22. H. M. Wiseman and G. J. Milburn, “Quantum theory of optical feedback via homodyne detection,” Phys. Rev. Lett. 70, 548–551(1993). [CrossRef]
  23. A. C. Doherty and K. Jacobs, “Feedback control of quantum systems using continuous state estimation,” Phys. Rev. A 60, 2700–2711 (1999). [CrossRef]
  24. N. V. Morrow, S. K. Dutta, and G. Raithel, “Feedback control of atomic motion in an optical lattice,” Phys. Rev. Lett. 88, 093003 (2002). [CrossRef]
  25. P. Bushev, D. Rotter, A. Wilson, F. Dubin, C. Becher, J. Eschner, R. Blatt, V. Steixner, P. Rabl, and P. Zoller, “Feedback cooling of a single trapped ion,” Phys. Rev. Lett. 96, 043003 (2006).
  26. A. R. Carvalho and J. J. Hope, “Stabilizing entanglement by quantum-jump-based feedback,” Phys. Rev. A 76, 010301(R) (2007). [CrossRef]
  27. A. R. R. Carvalho, A. J. S. Reid, and J. J. Hope, “Controlling entanglement by direct quantum feedback,” Phys. Rev. A 78, 012334 (2008). [CrossRef]
  28. S. C. Hou, X. L. Huang, and X. X. Yi, “Suppressing decoherence and improving entanglement by quantum-jump-based feedback control in two-level systems,” Phys. Rev. A 82, 012336 (2010).
  29. R. N. Stevenson, A. R. R. Carvalho, and J. J. Hope, “Production of entanglement in Raman three-level systems using feedback,” Eur. Phys. J. D 61, 523 (2011). [CrossRef]
  30. D. Xue, J. Zou, J. G. Li, W. Y. Chen, and B. Shao, “Controlling entanglement between two separated atoms by quantum-jump-based feedback,” J. Phys. B 43, 045503 (2010).
  31. X. S. Liu, W. Z. Liu, R. B. Wu, and G. L. Long, “Control of state localization in a two-level quantum system,” J. Opt. B: Quantum Semiclass. Opt 7, 66–69 (2005).
  32. J. Wang, H. M. Wiseman, and G. J. Milburn, “Dynamical creation of entanglement by homodyne-mediated feedback,” Phys. Rev. A 71, 042309 (2005).
  33. J. G. Li, J. Zou, B. Shao, and J. F. Cai, “Steady atomic entanglement with different quantum feedbacks,” Phys. Rev. A 77, 012339 (2008).
  34. Z. Liu, L. L. Kuang, K. Hu, L. T. Xu, S. H. Wei, L. Z. Guo, and X. Q. Li, “Deterministic creation and stabilization of entanglement in circuit QED by homodyne-mediated feedback control,” Phys. Rev. A 82, 032335 (2010).
  35. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143(2000). [CrossRef]
  36. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Polarization conversion in a silica microsphere,” Nature (London) 421, 925–928 (2003). [CrossRef]
  37. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature (London) 431, 162–167 (2004). [CrossRef]
  38. C. D. Ogden, E. K. Irish, and M. S. Kim, “Dynamics in a coupled-cavity array,” Phys. Rev. A 78, 063805 (2008). [CrossRef]
  39. J. Cho, D. G. Angelakis, and S. Bose, “Simulation of high-spin Heisenberg models in coupled cavities,” Phys. Rev. A 78, 062338 (2008).
  40. J. Cho, D. G. Angelakis, and S. Bose, “Fractional quantum hall state in coupled cavities,” Phys. Rev. Lett. 101, 246809 (2008). [CrossRef]
  41. D. G. Angelakis and A. Kay, “Weaving light-matter qubits into a one way quantum computer,” arXiv:quant-ph/0702133 .
  42. J. Song, X. D. Sun, Y. Xia, and H. S. Song, “Efficient creation of continuous-variable entanglement for two atomic ensembles in coupled cavities,” Phys. Rev. A 83, 052309 (2011).
  43. M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Effective spin systems in coupled microcavities,” Phys. Rev. Lett. 99, 160501 (2007).
  44. J. Song, Y. Xia, and H. S. Song, “One-step generation of cluster state by adiabatic passage in coupled cavities,” Appl. Phys. Lett. 96, 071102 (2010).
  45. K. Härkönen, F. Plastina, and S. Maniscalco, “Dicke model and environment-induced entanglement in ion-cavity QED,” Phys. Rev. A 80, 033841 (2009). [CrossRef]
  46. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245 (1998). [CrossRef]
  47. T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
  48. P. Zanardi and M. Rasetti, “Noiseless quantum codes,” Phys. Rev. Lett. 79, 3306–3309 (1997). [CrossRef]
  49. M. J. Kastoryano, F. Reiter, and A. S. Sorensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011). [CrossRef]
  50. D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998). [CrossRef]
  51. S. B. Zheng, C. P. Yang, and F. Nori, “Arbitrary control of coherent dynamics for distant qubits in a quantum network,” Phys. Rev. A 82, 042327 (2010).
  52. H. M. Wiseman, S. Mancini, and J. Wang, “Bayesian feedback versus Markovian feedback in a two-level atom,” Phys. Rev. A 66, 013807 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited