OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 274–279

Room-temperature strong terahertz photon mixing in graphene

Sultan Shareef, Yee Sin Ang, and Chao Zhang  »View Author Affiliations


JOSA B, Vol. 29, Issue 3, pp. 274-279 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000274


View Full Text Article

Enhanced HTML    Acrobat PDF (348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that single layer graphene exhibits a strong nonlinear photon-mixing effect in the terahertz frequency regime. Up to room temperature, the third-order nonlinear current in graphene grows rapidly with increasing temperature. The third-order nonlinear current can be as strong as the linear current under a moderate electric field strength of 10 4 V / cm . Because of the unique Dirac behavior of the graphene quasi-particles, low Fermi level and electron fillings optimizes the optical nonlinearity. Under a strong-field condition, the strong-field-induced Dirac fermion population redistribution and nonequilibrium carrier heating effects further amplify the optical nonlinearity of graphene. Our results suggest that doped graphene can potentially be utilized as a strong terahertz photon mixer in the room-temperature regime.

© 2012 Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 2, 2011
Revised Manuscript: November 8, 2011
Manuscript Accepted: November 11, 2011
Published: February 10, 2012

Citation
Sultan Shareef, Yee Sin Ang, and Chao Zhang, "Room-temperature strong terahertz photon mixing in graphene," J. Opt. Soc. Am. B 29, 274-279 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-3-274


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004). [CrossRef]
  2. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007). [CrossRef]
  3. Y. Zhang, Y. Tan, H. L. Sormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438, 201–204 (2005). [CrossRef]
  4. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351–355 (2008). [CrossRef]
  5. T. Ando, T. Nakanishi, and R. Saito, “Berry’s phase and absence of back scattering in carbon nanotubes,” J. Phys. Soc. Jpn. 67, 2857–2862 (1998). [CrossRef]
  6. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100, 117401 (2008). [CrossRef]
  7. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101, 196405 (2008). [CrossRef]
  8. A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein, “Integer quantum Hall transition: an alternative approach and exact results,” Phys. Rev. B 50, 7526 (1994). [CrossRef]
  9. C. Zhang, L. Chen, and Z. Ma, “Orientation dependence of the optical spectra in graphene at high frequencies,” Phys. Rev. B 77, 241402(R)(2008). [CrossRef]
  10. Y. Zheng and T. Ando, “Hall conductivity of a two-dimensional graphite system,” Phys. Rev. B 65, 245420 (2002). [CrossRef]
  11. V. P. Gusynin and S. G. Sharapov, “Unconventional integer quantum Hall effect in graphene,” Phys. Rev. Lett. 95, 146801 (2005). [CrossRef]
  12. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315, 1379 (2007). [CrossRef]
  13. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, and A. K. Geim, “Strong suppression of weak localization in graphene,” Phys. Rev. Lett. 97, 016801 (2006). [CrossRef]
  14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005). [CrossRef]
  15. A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Appl. Phys. Lett. 95, 072101 (2009). [CrossRef]
  16. S. A. Mikhailov, “Non-linear electromagnetic response of graphene,” Europhys. Lett. 79, 27002 (2007). [CrossRef]
  17. S. A. Mikhailov, and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter 20, 384204 (2008). [CrossRef]
  18. K. L. Ishikawa, “Nonlinear optical response of graphene in time domain,” Phys. Rev. B 82, 201402(R) (2010). [CrossRef]
  19. Y. S. Ang, S. Sultan, and C. Zhang, “Nonlinear optical spectrum of bilayer graphene in the terahertz regime,” Appl. Phys. Lett. 97, 243110 (2010). [CrossRef]
  20. Y. S. Ang and C. Zhang, “Subgap optical conductivity in semihydrogenated graphene,” Appl. Phys. Lett. 98, 042107(2011). [CrossRef]
  21. E. Hendry, P. J. Hale, J. Moger, and A. K. Savchenko, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010). [CrossRef]
  22. J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21, 2430–2435 (2009). [CrossRef]
  23. M. Dragoman, D. Neculoiu, G. Deligeorgis, G. Konstantinidis, D. Dragoman, A. Cismaru, A. A. Muller, and R. Plana, “Millimeter-wave generation via frequency multiplication in graphene,” Appl. Phys. Lett. 97, 093101 (2010). [CrossRef]
  24. R. P. Feynman, “Forces in Molecules,” Phys. Rev. 56, 340–343 (1939). [CrossRef]
  25. C. Chen, C. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617–620 (2011). [CrossRef]
  26. F. Gao, G. Wang, and C. Zhang, “Strong photon-mixing of terahertz waves in semiconductor quantum wells induced by Rashba spin-orbit coupling,” Nanotechnology 19, 465401 (2008). [CrossRef]
  27. P. A. Wolff and G. A. Pearson, “Theory of optical mixing by mobile carriers in semiconductors,” Phys. Rev. Lett. 17, 1015–1017 (1966). [CrossRef]
  28. H. M. Dong, W. Xu, and R. B. Tan, “Temperature relaxation and energy loss of hot carriers in graphene,” Solid State Commun. 150, 1770–1773 (2010). [CrossRef]
  29. D. Sun, Z.-K. Wu, C. Divin, X. Li, C. Berger, W. A. Heer, P. N. First, and T. B. Norris, “Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett. 101, 157402(2008). [CrossRef]
  30. S. Butscher, F. Milde, M. Hirtschulz, E. Malic, and A. Knorr, “Hot electron relaxation and phonon dynamics in graphene,” Appl. Phys. Lett. 91, 203103 (2007). [CrossRef]
  31. W. S. Bao, S. Y. Liu, and X. L. Lei, “Hot-electron transport in graphene driven by intense terahertz fields,” Phys. Lett. A 374, 1266–1269 (2010). [CrossRef]
  32. G.-K. Lim, Z.-L. Chen, J. Clark, R. G. S. Goh, W.-H. Ng, H.-W. Tan, R. H. Friend, P. K. H. Ho, and L.-L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photon. 5, 554–560 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited