OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 300–304

One-step implementation of a multiqubit controlled-phase gate with superconducting quantum interference devices coupled to a resonator

Y. Q. Zhang, S. Zhang, K. H. Yeon, and S. C. Yu  »View Author Affiliations


JOSA B, Vol. 29, Issue 3, pp. 300-304 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000300


View Full Text Article

Enhanced HTML    Acrobat PDF (185 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A scheme for one-step implementation of an n -qubit controlled-phase gate is proposed in a superconducting quantum interference device (SQUID) system. The distinguishing feature of this scheme is the simultaneous and nonidentical off-resonant Raman coupling of the n SQUID qubits to a single-mode resonator and the microwave pulses. The scheme is efficient and simple because it requires only one-step evolution, and no adjustments of the experimental parameters are needed during the operation.

© 2012 Optical Society of America

OCIS Codes
(160.1245) Materials : Artificially engineered materials
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: August 25, 2011
Revised Manuscript: November 8, 2011
Manuscript Accepted: November 8, 2011
Published: February 10, 2012

Citation
Y. Q. Zhang, S. Zhang, K. H. Yeon, and S. C. Yu, "One-step implementation of a multiqubit controlled-phase gate with superconducting quantum interference devices coupled to a resonator," J. Opt. Soc. Am. B 29, 300-304 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-3-300


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration of a fundamental quantum logic gate,” Phys. Rev. Lett. 75, 4714–4717 (1995). [CrossRef]
  2. P. Domokos, J. M. Raimond, M. Brune, and S. Haroche, “Simple cavity-QED two-bit universal quantum logic gate: The principle and expected performances,” Phys. Rev. A 52, 3554–3559 (1995). [CrossRef]
  3. T. Yamamoto, Yu. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature 425, 941–944 (2003). [CrossRef]
  4. J. Q. You, J. S. Tsai, and F. Nori, “Controllable manipulation and entanglement of macroscopic quantum states in coupled charge qubits,” Phys. Rev. B 68, 024510 (2003). [CrossRef]
  5. A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004). [CrossRef]
  6. C. P. Yang, S. I. Chu, and S. Han, “Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter,” Phys. Rev. Lett. 92, 117902 (2004). [CrossRef]
  7. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004). [CrossRef]
  8. I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, “Coherent dynamics of a flux qubit coupled to a harmonic oscillator,” Nature 431, 159–162(2004). [CrossRef]
  9. J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449, 443–447 (2007). [CrossRef]
  10. J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, “Quantum superposition of distinct macroscopic states,” Nature 406, 43–46 (2000). [CrossRef]
  11. Z. Y. Zhou, S. I. Chu, and S. Han, “Quantum computing with superconducting devices: A three-level SQUID qubit,” Phys. Rev. B 66, 054527 (2002). [CrossRef]
  12. C. P. Yang, S. I. Chu, and S. Han, “Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED,” Phys. Rev. A 67, 042311 (2003). [CrossRef]
  13. M. H. S. Amin, A. Yu. Smirnov, and A. M. van den Brink, “Josephson-phase qubit without tunneling,” Phys. Rev. B 67, 100508(R) (2003). [CrossRef]
  14. C. P. Yang, S. I. Chu, and S. Han, “Simplified realization of two-qubit quantum phase gate with four-level systems in cavity QED,” Phys. Rev. A 70, 044303 (2004). [CrossRef]
  15. C. P. Yang, S. I. Chu, and S. Han, “An energy relaxation tolerant approach to quantum entanglement, information transfer, and gates with superconducting-quantum-interference-device qubits in cavity QED,” J. Phys. Condens. Matter 16, 1907–1914 (2004). [CrossRef]
  16. Z. Kis and E. Paspalakis, “Arbitrary rotation and entanglement of flux SQUID qubits,” Phys. Rev. B 69, 024510 (2004). [CrossRef]
  17. Z. Y. Zhou, S. I. Chu, and S. Han, “Suppression of energy-relaxation-induced decoherence in Λ-type three-level SQUID flux qubits: A dark-state approach,” Phys. Rev. B 70, 094513 (2004). [CrossRef]
  18. K. H. Song, Z. W. Zhou, and G. C. Guo, “Quantum logic gate operation and entanglement with superconducting quantum interference devices in a cavity via a Raman transition,” Phys. Rev. A 71, 052310 (2005). [CrossRef]
  19. P. Zhang, Z. D. Wang, J. D. Sun, and C. P. Sun, “Holonomic quantum computation using rf superconducting quantum interference devices coupled through a microwave cavity,” Phys. Rev. A 71, 042301 (2005). [CrossRef]
  20. C. P. Yang and S. Han, “Rotation gate for a three-level superconducting quantum interference device qubit with resonant interaction,” Phys. Rev. A 74, 044302 (2006). [CrossRef]
  21. C. F. Wu, X. L. Feng, X. X. Yi, I. M. Chen, and C. H. Oh, “Quantum gate operations in the decoherence-free subspace of superconducting quantum-interference devices,” Phys. Rev. A 78, 062321 (2008). [CrossRef]
  22. J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836–839 (2007). [CrossRef]
  23. X. L. He, C. P. Yang, S. Li, J. Y. Luo, and S. Han, “Quantum logical gates with four-level superconducting quantum interference devices coupled to a superconducting resonator,” Phys. Rev. A 82, 024301 (2010). [CrossRef]
  24. M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001). [CrossRef]
  25. S. L. Braunstein, V. Bužek, and M. Hillery, “Quantum-information distributors: quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit,” Phys. Rev. A 63, 052313 (2001). [CrossRef]
  26. T. Beth and M. Rötteler, Quantum Information (Springer, 2001).
  27. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995). [CrossRef]
  28. M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Quantum circuits for general multiqubit gates,” Phys. Rev. Lett. 93, 130502 (2004). [CrossRef]
  29. C. P. Yang and S. Han, “n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator,” Phys. Rev. A 72, 032311 (2005). [CrossRef]
  30. C. P. Yang and S. Han, “Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED,” Phys. Rev. A 73, 032317 (2006). [CrossRef]
  31. C. P. Yang, Y. X. Liu, and F. Nori, “Phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 81, 062323 (2010). [CrossRef]
  32. C. P. Yang, S. B. Zheng, and F. Nori, “Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 82, 062326 (2010). [CrossRef]
  33. S. Han, R. Rouse, and J. E. Lukens, “Generation of a population inversion between quantum states of a macroscopic variable,” Phys. Rev. Lett. 76, 3404–3407 (1996). [CrossRef]
  34. C. P. Yang, “Preparation of n-qubit Greenberger-Horne-Zeilinger entangled states in cavity QED: an approach with tolerance to nonidentical qubit-cavity coupling constants,” Phys. Rev. A 83, 062302 (2011). [CrossRef]
  35. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000). [CrossRef]
  36. S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett. 87, 230404 (2001). [CrossRef]
  37. J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature 453, 1031–1042 (2008). [CrossRef]
  38. L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Demonstration of two-qubit algorithms with a superconducting quantum processor,” Nature 460, 240–244 (2009). [CrossRef]
  39. P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, and A. Wallraff, “Using sideband transitions for two-qubit operations in superconducting circuits,” Phys. Rev. B 79, 180511(R) (2009). [CrossRef]
  40. P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425, 817–821 (2003). [CrossRef]
  41. W. Y. Huo and G. L. Long, “Entanglement and squeezing in solid-state circuits,” New J. Phys. 10, 013026 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited