OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 319–327

Manipulating single photons from disparate quantum sources to be indistinguishable [Invited]

Glenn S. Solomon, Edward B. Flagg, Sergey V. Polyakov, Tim Thomay, and Andreas Muller  »View Author Affiliations

JOSA B, Vol. 29, Issue 3, pp. 319-327 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2352 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quantum information networks will likely require different quantum systems for different functionality within the network. Indistinguishable photons can be used to interconnect these different subsystems. We discuss methods for coherently manipulating the single photons from different quantum systems and experimentally demonstrate spatial, temporal, and frequency matching of single photons using quantum dot and heralded parametric downconversion single photons. The bosonic nature of light insures that when two indistinguishable photons are superimposed on a beam splitter, they will form a single two-photon state, a process we call coalescence. This coalescence property can be used as both a fundamental test of indistinguishability and in quantum networks—connecting and propagating quantum information.

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.4320) Optical devices : Nonlinear optical devices
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.5750) Optical devices : Resonators
(270.5290) Quantum optics : Photon statistics
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: December 2, 2011
Manuscript Accepted: December 6, 2011
Published: February 13, 2012

Glenn S. Solomon, Edward B. Flagg, Sergey V. Polyakov, Tim Thomay, and Andreas Muller, "Manipulating single photons from disparate quantum sources to be indistinguishable [Invited]," J. Opt. Soc. Am. B 29, 319-327 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration of a fundamental quantum logic gate,” Phys. Rev. Lett. 75, 4714–4717 (1995). [CrossRef]
  2. X. Maitre, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, “Quantum memory with a single photon in a cavity,” Phys. Rev. Lett. 79, 769–772 (1997). [CrossRef]
  3. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001). [CrossRef]
  4. D. Kielpinski, V. Meyer, M. A. Rowe, C. A. Sackett, W. M. Itano, C. Monroe, and D. J. Wineland, “A decoherence-free quantum memory using trapped ions,” Science 291, 1013–1015 (2001). [CrossRef]
  5. M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004). [CrossRef]
  6. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010). [CrossRef]
  7. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef]
  8. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005). [CrossRef]
  9. M. T. Rakher, L. Ma, O. T. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photon. 4, 786–791 (2010). [CrossRef]
  10. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008). [CrossRef]
  11. N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17, 6275–6282 (2009). [CrossRef]
  12. C. H. Bennett and G. Brassard, “The dawn of a new era for quantum cryptography: the experimental prototype is working!” SIGACT News 20(4), 78–80 (1989). [CrossRef]
  13. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers Systems and Signal Processing (IEEE, 1984), pp. 175–179.
  14. D. Bouwmeester, A. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information (Springer, 2000), pp. 49–92.
  15. P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595–604 (1998). [CrossRef]
  16. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007). [CrossRef]
  17. R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956). [CrossRef]
  18. H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691–695 (1977). [CrossRef]
  19. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef]
  20. A. Kiraz, M. Atature, and A. Imamoglu, “Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004). [CrossRef]
  21. E. B. Flagg, A. Muller, S. V. Polyakov, A. Ling, A. Midgall, and G. S. Solomon, “Interference of single photons from two separate semiconductor quantum dots,” Phys. Rev. Lett. 104, 137401 (2010). [CrossRef]
  22. R. B. Patel, A. J. Bennett, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Two-photon interference of the emission from electrically tunable remote quantum dots,” Nat. Photon. 4, 632–635 (2010). [CrossRef]
  23. A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5, 715–717 (2009). [CrossRef]
  24. J. Bylander, I. Robert-Philip, and I. Abram, “Interference and correlation of two independent photons,” Eur. Phys. J. D 22, 295–301 (2003).
  25. All uncertainties stated are one standard deviation.
  26. Z. Y. Ou, and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54–57 (1988). [CrossRef]
  27. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005). [CrossRef]
  28. A. Muller, E. B. Flagg, M. Metcalfe, J. Lawall, and G. S. Solomon, “Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity,” Appl. Phys. Lett. 95, 173101 (2009). [CrossRef]
  29. S. Seidl, M. Kroner, A. Hogele, and K. Karrai, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006). [CrossRef]
  30. P. A. Dalgarno, J. M. Smith, B. D. Gerardot, A. O. Govorov, K. Karrai, P. M. Petroff, and R. J. Warburton, “Dark exciton decay dynamics of a semiconductor quantum dot,” Phys. Status Solidi A 202, 2591–2597 (2005). [CrossRef]
  31. R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100, 207405 (2008). [CrossRef]
  32. S. Ates, S. M. Ulrich, S. Reitzenstein, A. Loeffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009). [CrossRef]
  33. R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University, 2000).
  34. Z. Y. Ou, E. C. Gage, B. E. Magill, and L. J. Mandel, “Fourth-order interference technique for determining the coherence time of a light beam,” J. Opt. Soc. Am. B 6, 100–103 (1989). [CrossRef]
  35. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002). [CrossRef]
  36. A. Dousse, L. Lanco, J. Suffczynski, E. Semenova, A. Miard, A. Lemaitre, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light–matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited