OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 346–350

Frequency doubling and sum-frequency mixing operation at 469.2, 471, and 473 nm in Nd:YAG

Bin Xu, Patrice Camy, Jean-Louis Doualan, Alain Braud, Zhiping Cai, François Balembois, and Richard Moncorgé  »View Author Affiliations

JOSA B, Vol. 29, Issue 3, pp. 346-350 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (354 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report CW blue laser operation at 469.2, 471, and 473 nm by efficient intracavity second-harmonic generation and sum-frequency generation of the R 2 Z 5 (938.5 nm) and R 1 Z 5 (946 nm) F 4 3 / 2 I 4 9 / 2 intermultiplet transitions in Nd:YAG with an LiB 3 O 5 nonlinear crystal. Single-wavelength laser operation at 469.2 nm and multiwavelength operation at 469.2, 471, and 473 nm are obtained with maximum output powers of 1.4 and 0.15 W, respectively, by using a glass etalon as frequency selector. The 469 nm blue laser is an efficient pumping source of Pr 3 + -doped materials.

© 2012 Optical Society of America

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 21, 2011
Manuscript Accepted: October 31, 2011
Published: February 14, 2012

Bin Xu, Patrice Camy, Jean-Louis Doualan, Alain Braud, Zhiping Cai, François Balembois, and Richard Moncorgé, "Frequency doubling and sum-frequency mixing operation at 469.2, 471, and 473 nm in Nd:YAG," J. Opt. Soc. Am. B 29, 346-350 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, and B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl(5-x)O12 materials: application toward a compositionally tuned 0.94 μm laser,” J. Opt. Soc. Am. B 15, 2794–2801 (1998). [CrossRef]
  2. A. Braud, F. S. Ermeneux, Y. Sun, R. L. Cone, R. W. Equall, R. L. Hutcheson, C. Maunier, R. Moncorgé, N. P. Barnes, H. G. Gallagher, and T. P. Han, “Nd-doped mixed scandium garnets for improved laser performance and compositional tuning from 937 to 946 nm,” in Advanced Solid State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), paper ME12.
  3. S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 275, 170–172 (2007). [CrossRef]
  4. B. Xu, P. Camy, J. L. Doualan, R. Soulard, Z. P. Cai, and R. Moncorgé, “Efficient diode-pumped Nd:GGG laser operation at 933.6 and 937.3 nm,” Appl. Phys. B, 106, 19–24 (2011). [CrossRef]
  5. C. Czeranowsky, E. Heumann, and G. Huber, “All solid state continuous wave frequency-doubled Nd:YAG-BiBO laser with 2.8 W output power at 473 nm,” Opt. Lett. 28, 432–434 (2003). [CrossRef]
  6. Z. Quan, Y. Yao, L. Bin, D. Qu, and Z. Ling, “13.2 W laser diode pumped Nd:YVO4/LBO blue laser at 457 nm,” J. Opt. Soc. Am. B 26, 1238–1242 (2009). [CrossRef]
  7. J. Gao, X. Yu, F. Chen, X. Li, R. Yan, K. Zhang, J. Yu, and Y. Wang, “12.0 W continuous-wave diode end-pumped Nd:GdVO4 laser with high brightness operating at 912 nm,” Opt. Express 17, 3574–3580 (2009). [CrossRef]
  8. A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped praseodymium-lasers,” Opt. Express 15, 5172–5178 (2007). [CrossRef]
  9. P. Camy, J. L. Doualan, R. Moncorgé, J. Bengoechea, and U. Weichmann, “Diode-pumped Pr3+:KY3F10 red laser,” Opt. Lett. 32, 1462–1464 (2007). [CrossRef]
  10. K. Hashimoto and F. Kannari, “High-power GaN diode-pumped continuous wave Pr3+-doped LiYF4 laser,” Opt. Lett. 32, 2493–2495 (2007). [CrossRef]
  11. S. Khiari, M. Velazquez, R. Moncorgé, J. L. Doualan, P. Camy, A. Ferrier, and M. Diaf, “Red luminescence analysis of Pr3+ doped fluoride crystals,” J. Alloys Compd. 451, 128–131 (2008). [CrossRef]
  12. F. Cornacchia, A. Di Lieto, M. Tonelli, A. Richter, E. Heumann, and G. Huber, “Efficient visible laser emission of GaN laser diode pumped Pr-doped fluoride scheelite crystals,” Opt. Express 16, 15932–15941 (2008). [CrossRef]
  13. D. Pabœuf, O. Mhibik, F. Bretenaker, Ph. Goldner, D. Parisi, and M. Tonelli, “Diode-pumped Pr:BaY2F8 continuous-wave orange laser,” Opt. Lett. 36, 280–282 (2011). [CrossRef]
  14. B. Xu, P. Camy, J. L. Doualan, Z. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19, 1191–1197 (2011). [CrossRef]
  15. R. Koch, W. A. Clarkson, and D. C. Hanna, “Diode pumped CW Nd:YAG laser operating at 938.5 nm,” Electron. Lett. 32, 553–554 (1996). [CrossRef]
  16. S. Bjurshagen, D. Evekull, and R. Koch, “Generation of blue light at 469 nm by efficient frequency doubling of diode pumped Nd:YAG laser,” Electron. Lett. 38, 324–325 (2002). [CrossRef]
  17. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993). [CrossRef]
  18. S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminium garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974). [CrossRef]
  19. P. Li, D. Li, and Z. Zhang, “Efficient generation of blue light by intracavity frequency doubling of a cw Nd:YAG laser with LBO,” Opt. Laser Technol. 39, 1421–1425 (2007). [CrossRef]
  20. A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18, 20013–20018(2010). [CrossRef]
  21. M. Hercher, “Tunable single mode operation of gas lasers using intracavity tilted etalons,” Appl. Opt. 8, 1103–1106 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited