OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 351–356

Laser-induced high-pressure and high-temperature conditions at the titanium–water interface and their implication on TiO 2 nanoparticles

Arpita Nath and Alika Khare  »View Author Affiliations


JOSA B, Vol. 29, Issue 3, pp. 351-356 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000351


View Full Text Article

Enhanced HTML    Acrobat PDF (510 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Pulsed laser-induced breakdown at the titanium–water interface leads to the formation of titanium–water plasma, which evokes high-pressure and high-temperature (HPHT) conditions at the interfacial region and under suitable condition results in the formation of TiO 2 nanoparticles. Laser-induced HPHT conditions at the titanium–water interface are characterized using the beam deflection setup and laser-induced breakdown spectroscopy, respectively. An estimate of HPHT at the interface is used to gain insight into the nucleation process of TiO 2 nanoparticles. Assuming the existence of the thermodynamical equilibrium between the titanium and water plasma, the pressure and temperature at the interface are employed to measure the nucleation time, growth velocity, and the size of the nanoparticles for comparison with the synthesized nanoparticles.

© 2012 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3440) Lasers and laser optics : Laser-induced breakdown
(160.4236) Materials : Nanomaterials
(110.5125) Imaging systems : Photoacoustics
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 22, 2011
Manuscript Accepted: November 8, 2011
Published: February 17, 2012

Citation
Arpita Nath and Alika Khare, "Laser-induced high-pressure and high-temperature conditions at the titanium–water interface and their implication on TiO2 nanoparticles," J. Opt. Soc. Am. B 29, 351-356 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-3-351


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000). [CrossRef]
  2. X. Y. Chen, H. Cui, P. Liu, and G. W. Yang, “Shape-induced ultraviolet absorption of CuO shuttlelike nanoparticles,” Appl. Phys. Lett. 90, 183118 (2007). [CrossRef]
  3. J. B. Wang, G. W. Yang, C. Y. Zhang, X. L. Zhong, and ZH. A. Ren, “Cubic-BN nanocrystals synthesis by pulsed laser induced liquid–solid interfacial reaction,” Chem. Phys. Lett. 367, 10–14 (2003). [CrossRef]
  4. Q. X. Liu, C. X. Wang, W. Zhang, and G. W. Wang, “Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction,” Chem. Phys. Lett. 382, 1–5 (2003). [CrossRef]
  5. F. Tian, J. Sun, S. L. Hu, and X. W. Du, “Growth dynamics of nanodiamonds synthesized by pulsed-laser ablation,” J. Appl. Phys. 104, 096102 (2008). [CrossRef]
  6. R. M. Tilaki, A. Iraji Zad, and S. M. Mahdavi, “Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media,” Appl. Phys. A 84, 215–219(2006). [CrossRef]
  7. Y. Ishikawa, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature,” J. Colloid Interface Sci. 300, 612–615 (2006). [CrossRef]
  8. J. Sun, S.-L. Hu, X.-W. Du, Y.-W. Lei, and L. Jiang, “Ultrafine diamond synthesized by long-pulse-width laser,” Appl. Phys. Lett. 89, 183115 (2006). [CrossRef]
  9. E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, and G. A. Shafeev, “Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses,” Opt. Express 17, 12650–12659 (2009). [CrossRef]
  10. T. Tsuji, K. Iryo, Y. Nisimura, and M. Tsuji, “Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablation efficiency (II),” J. Photochem. Photobiol. A 145, 201–207 (2001). [CrossRef]
  11. C. H. Liang, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of ultrafine TiO2 nanocrystals via pulsed-laser ablation of titanium metal in surfactant solution,” Appl. Phys. A 80, 819–822 (2005). [CrossRef]
  12. A. Nath, S. S. Laha, and A. Khare, “Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium–water interface,” Appl. Surf. Sci. 257, 3118–3122 (2011). [CrossRef]
  13. C. X. Wang, Y. H. Yang, and G. W. Yang, “Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid,” J. Appl. Phys. 97, 066104 (2005). [CrossRef]
  14. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990). [CrossRef]
  15. L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997). [CrossRef]
  16. J. G. Fujimoto, W. Z. Lin, E. P. Ipper, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).
  17. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984). [CrossRef]
  18. F. Docchio, P. Regondi, M. R. C. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times,” Appl. Opt. 27, 3661–3668 (1988). [CrossRef]
  19. P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004). [CrossRef]
  20. A. Nath and A. Khare, “Effect of focusing conditions on laser-induced shock waves at titanium–water interface,” Appl. Opt. 50, 3275–3281 (2011). [CrossRef]
  21. M. H. Rice and J. M. Walsh, “Equation of state of water to 250 kilobars,” J. Chem. Phys. 26, 824–930 (1957). [CrossRef]
  22. S. Y. Moon and W. Choe, “A comparative study of rotational temperatures using diatomic OH, O2 and N2+ molecular spectra emitted from atmospheric plasmas,” Spectrochim. Acta. B 58, 249–257 (2003). [CrossRef]
  23. G. H. Dieke and H. M. Crosswhite, “The ultraviolet bands of OH fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962). [CrossRef]
  24. A. Goldman and J. R. Gillis, “Spectral line parameters for the A2∑−X2Π(0,0) band of OH for atmospheric and high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111–135 (1981). [CrossRef]
  25. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999). [CrossRef]
  26. J. Feder, K. C. Russel, J. Lothe, and G. M. Pound, “Homogeneous nucleation and growth of droplets in vapours,” Adv. Phys. 15, 111–178 (1966). [CrossRef]
  27. C. X. Wang, Y. H. Yang, N. S. Xu, and G. W. Yang, “Thermodynamics of diamond nucleation on the nanoscale,” J. Am. Chem. Soc. 126, 11303–11306 (2004). [CrossRef]
  28. G. Oskam, A. Nellore, R. L. Penn, and P. C. Searson, “The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio,” J. Phys. Chem. B 107, 1734–1738 (2003). [CrossRef]
  29. D. Errandoneaa, Y. Meng, M. Somayazulu, and D. Häusermann, “Pressure-induced α→ω transition in titanium metal: a systematic study of the effects of uniaxial stress,” J. Phys. B 355, 116–125 (2005). [CrossRef]
  30. Y. Akahama, H. Kwamura, D. Häusermann, M. Hanfland, and O. Shimomura, “New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid,” Phys. Rev. Lett. 74, 4690–4693 (1995). [CrossRef]
  31. A. Afir, M. Achour, and N. Saoula, “X-ray diffraction study of Ti–O–C system at high temperature and in a continuous vacuum,” J. Alloys Compd. 288, 124–140 (1999). [CrossRef]
  32. D. A. Young, Phase Diagrams of the Elements (University of California, 1991).
  33. C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87, 201913 (2005). [CrossRef]
  34. H. Zhang and J. F. Banfield, “New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles,” Am. Mineralog. 84, 528–535 (1999).
  35. G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648–698(2007). [CrossRef]
  36. J. Israelachvili, Intermolecular and Surface Forces (Academic, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited