OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 357–362

Tunable behavior of reflectance minima in periodic Ge submicron grating structures

Jung Woo Leem, Yong Pyung Kim, and Jae Su Yu  »View Author Affiliations


JOSA B, Vol. 29, Issue 3, pp. 357-362 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000357


View Full Text Article

Enhanced HTML    Acrobat PDF (1289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The periodic bullet-like and cone-like submicron grating (SMG) structures on germanium (Ge) substrates were fabricated by dry etching processes via laser interference lithography. Their optical reflectance characteristics as well as the wettability of the surface were investigated. The wide cone-like Ge SMG structure exhibited a lower reflectance than that of the narrow bullet-like Ge SMG structure at wavelengths of 300–1100 nm due to its relatively high volume fraction and the more linearly graded effective refractive index distribution between air and the Ge substrate. As the period of cone-like Ge SMGs was increased, the low reflectance band of < 10 % was shifted toward the longer-wavelength region and its minimum value became slightly higher. The fabricated Ge SMG structures showed a hydrophobic surface property with contact angles of 90.7–102.5°. For theoretical analysis, the reflectance calculations were also performed by a rigorous coupled-wave analysis simulation, which indicated a similar trend to the experimental results.

© 2012 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 13, 2011
Revised Manuscript: November 14, 2011
Manuscript Accepted: November 21, 2011
Published: February 17, 2012

Citation
Jung Woo Leem, Yong Pyung Kim, and Jae Su Yu, "Tunable behavior of reflectance minima in periodic Ge submicron grating structures," J. Opt. Soc. Am. B 29, 357-362 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-3-357


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coating based on semiconductor nanorods,” Adv. Mater. 21, 973–978 (2009). [CrossRef]
  2. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008). [CrossRef]
  3. M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007). [CrossRef]
  4. J. S. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, and Y. T. Lee, “Highly tolerant a-Si distributed Bragg reflector fabricated by oblique angle deposition,” Opt. Mater. Express 1, 451–457 (2011).
  5. J. Le Perchec, R. Espiau de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti, “High rejection bandpass optical filters based on sub-wavelength metal patch arrays,” Opt. Express 19, 15720–15731 (2011). [CrossRef]
  6. A. C. van Popta, J. J. Steele, S. Tsoi, J. G. C. Veinot, M. J. Brett, and J. C. Sit, “Porous nanostructured optical filters rendered insensitive to humidity by vapor-phase functionalization,” Adv. Funct. Mater. 16, 1331–1336 (2006). [CrossRef]
  7. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100, 891–896 (2010). [CrossRef]
  8. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010). [CrossRef]
  9. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18, 13063–13071 (2010). [CrossRef]
  10. J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95, 2221–2227 (2011). [CrossRef]
  11. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273, 661–667 (2006). [CrossRef]
  12. Y. Xu, H. B. Sun, J. Y. Ye, S. Matsuo, and H. Misawa, “Fabrication and direct transmission measurement of high-aspect-ratio two-dimensional silicon-based photonic crystal chips,” J. Opt. Soc. Am. B 18, 1084–1091 (2001). [CrossRef]
  13. F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M. F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and P. Veillet, J. Vac. Sci. Technol. B 13, 2787–2791 (1995). [CrossRef]
  14. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21, 2874–2877 (2003). [CrossRef]
  15. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO2 films,” Opt. Lett. 26, 1642–1644 (2001). [CrossRef]
  16. R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110, 023107 (2011). [CrossRef]
  17. S. L. Cheng, J. Lu, G. Shambat, H. Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17, 10019–10024 (2009). [CrossRef]
  18. W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94, 223504 (2009). [CrossRef]
  19. N. A. Kalyuzhnyy, A. S. Gudovskikh, V. V. Evstropov, V. M. Lantratov, S. A. Mintairov, N. K. Timoshina, M. Z. Shvarts, and V. M. Andreev, “Germanium subcells for multi-junction GaInP/GaInAs/Ge solar cells,” Semiconductors 44, 1520–1528 (2010). [CrossRef]
  20. J. M. Kontio, J. Simonen, K. Leinonen, M. Kuittinen, and T. Niemi, “Broadband infrared mirror using guided-mode resonance in a subwavelength germanium grating,” Opt. Lett. 35, 2564–2566 (2010). [CrossRef]
  21. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008). [CrossRef]
  22. Y. H. Ahn and J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91, 162102 (2007). [CrossRef]
  23. S. K. Ray, S. Das, R. K. Singha, S. Manna, and A. Dhar, “Structural and optical properties of germanium nanostructures on Si(100) and embedded in high-k oxides,” Nanoscale Res. Lett. 6, 224 (2011). [CrossRef]
  24. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010). [CrossRef]
  25. J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells,” Opt. Express 19, A1155–A1164 (2011). [CrossRef]
  26. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  27. Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19, 297–305 (2011). [CrossRef]
  28. SOPRA, http://www.sopra-sa.com , accessed 30Aug.2011.
  29. T. S. Kim, H. Y. Yang, Y. H. Kil, T. S. Jeong, S. Kang, and K. H. Shim, “Dry etching of germanium by using inductively coupled CF4 plasma,” J. Korean Phys. Soc. 54, 2290–2296 (2009). [CrossRef]
  30. S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007). [CrossRef]
  31. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244, 281–282 (1973). [CrossRef]
  32. S. A. Kemme, S. H. Zaidi, and J. M. Gee, “Submicron diffractive gratings for thin film solar cell applications,” presented at the Ninth Workshop on Crystalline-Silicon Materials and Processes, Breckenridge, CO, Aug.1999.
  33. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).
  34. Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110(2010). [CrossRef]
  35. S. A. Boden and D. M. Bagnall, “Tunable reflectance minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited