OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 389–396

Dynamics of encrypted information in superconducting qubits with the presence of imperfect operations

N. Metwally  »View Author Affiliations

JOSA B, Vol. 29, Issue 3, pp. 389-396 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (511 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The original dense coding protocol is achieved via a quantum channel generated between a single Cooper pair and a cavity. The dynamics of the coded and decoded information is investigated for different values of the channel’s parameters. It is shown that these two types of information increase as the detuning parameter increases or the number of photons inside the cavity decreases. The coded and decoded information increases as the ratio of the capacities between the box and the gate decrease. The dynamics of information is investigated in the presence of imperfect operation during the coding process. It is found that, for the phase flip error, the upper bound of the coded and decoded information is much smaller than that depicted for the bit flip errors.

© 2012 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: June 6, 2011
Revised Manuscript: November 7, 2011
Manuscript Accepted: November 21, 2011
Published: February 22, 2012

N. Metwally, "Dynamics of encrypted information in superconducting qubits with the presence of imperfect operations," J. Opt. Soc. Am. B 29, 389-396 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  3. Q.-M. Song, B.-L. Fang, and L. Ye, “Deterministic quantum dense coding with cluster state in optical systems,” Opt. Commun. 284, 510–514 (2011). [CrossRef]
  4. P. S. Bourdon and E. Gerjuoy, “Overcoming a limitation of deterministic dense coding with a nonmaximally entangled initial state,” Phys. Rev. A 81, 022314 (2010). [CrossRef]
  5. N. Metwally, “Dense coding and dynamics of information over Bloch channels,” J. Phys. A 44, 055305–055315 (2011). [CrossRef]
  6. X.-H. Li, B.-K. Zhao, Y.-B. Sheng, F.-G. Deng, and H.-Y. Zhou, “Fault tolerant quantum key distribution based on quantum dense coding with collective noise,” Int. J. Quantum. Inform. 7, 1479–1489 (2009). [CrossRef]
  7. S. Quek, Z. Li, and Ye Yeo, “Effects of quantum noises and noisy quantum operations on entanglement and special dense coding,” Phys. Rev. A 81, 024302 (2010). [CrossRef]
  8. A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schocelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004). [CrossRef]
  9. A. D. Armourm, M. P. Blencowe, and K. C. Schwab, “Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box,” Phys. Rev. Lett. 88, 148301 (2002). [CrossRef]
  10. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Approaching unit visibility for control of a superconducting qubit with dispersive readout,” Phys. Rev. Lett. 95, 060501 (2005). [CrossRef]
  11. E. J. Pritchett and R. Geller, “Quantum memory for superconducting qubits,” Phys. Rev. A 72, 010301(R) (2005). [CrossRef]
  12. I. Chiorescu, Y. Nakamura, C. Harmans, and J. Mooij, “Coherent quantum dynamics of a superconducting flux qubit,” Science 299, 1869–1871 (2003). [CrossRef]
  13. N. Metwally and A. A. El-Amin, “Maximum entangled states and quantum teleportation via single Cooper pair box,” Physica E 41, 718–722 (2009). [CrossRef]
  14. V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. Devoret, “Quantum coherence with a single Cooper pair,” Phys. Scr. 1998, 165–170 (1998). [CrossRef]
  15. Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, 786–788 (1999). [CrossRef]
  16. Y. Nakamura, Yu. A. Pashkin, and J. S. Tsa, “Rabi oscillations in a Josephson-junction charge two-level system,” Phys. Rev. Lett. 87, 246601 (2001); [CrossRef]
  17. I. Chiorescu, P. Beret, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E. Moiji, “Coherent dynamics of a flux qubit coupled to a harmonic oscillator,” Nature 431, 159–162(2004). [CrossRef]
  18. J. S. Tsai and Y. Nakamura, “Superconducting single-Cooper-pair box quantum bit with multi-gate-pulse operation,” Physica C 367, 191–196 (2002). [CrossRef]
  19. R. Migliore, A. Messina, and A. Napoli, “Detecting quantum signatures of optical fields by ultrasmall Josephson junctions,” Eur. Phys. J. B 13, 585–588 (2000).
  20. A.-S. F. Obada, D. A. M. Abo-Kahla, N. Metwally, and M. Abdel-Aty, “The quantum computational speed of a single Cooper-pair box,” Physica E 43, 1792–1797 (2011). [CrossRef]
  21. D. Rodrigues, B. Gyorffy, and T. Spiller, “Arrays of Cooper pair boxes coupled to a superconducting reservoir: ‘superradiance’ and ‘revival’,” J. Phys. Condens. Matter 16, 4477–4494(2004). [CrossRef]
  22. Y. Makhlin, G. Schon, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001). [CrossRef]
  23. J. You and F. Nori, “Cooper-pair-box qubits in a quantum electrodynamic cavity,” Physica E 18, 33–34(2003).
  24. A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Quantum information processing with circuit quantum electrodynamics,” Phys. Rev. A 75, 032329 (2007). [CrossRef]
  25. C. Fuchs and A. Peres, “Quantum state disturbance vs. information gain: uncertainty relations for quantum information,” Phys. Rev. A 53, 2038–2045 (1996). [CrossRef]
  26. L. Maccone, “Information-disturbance tradeoff in quantum measurements,” Phys. Rev. A 73, 042307 (2006). [CrossRef]
  27. N. Metwally, “Information loss in local dissipation environments,” Int. J. Theor. Phys. 49, 1571–1579 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited