## Photon-subtracted squeezed coherent state: nonclassicality and decoherence in thermal environment |

JOSA B, Vol. 29, Issue 3, pp. 397-406 (2012)

http://dx.doi.org/10.1364/JOSAB.29.000397

Enhanced HTML Acrobat PDF (798 KB)

### Abstract

We introduce the photon-subtracted squeezed coherent state (PSSCS), which is theoretically constructed by repeatedly subtracting photons from the squeezed coherent state (SCS) with squeezing parameter

© 2012 Optical Society of America

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(270.6570) Quantum optics : Squeezed states

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: September 30, 2011

Revised Manuscript: November 14, 2011

Manuscript Accepted: November 14, 2011

Published: February 22, 2012

**Citation**

Zhen Wang, Xiang-guo Meng, and Hong-yi Fan, "Photon-subtracted squeezed coherent state: nonclassicality and decoherence in thermal environment," J. Opt. Soc. Am. B **29**, 397-406 (2012)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-3-397

Sort: Year | Journal | Reset

### References

- S. L. Braunstein and P. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005). [CrossRef]
- G. S. Agarwal and K. Tara, “Nonclassical properties of states generated by the excitations on a coherent state,” Phys. Rev. A 43, 492–497 (1991). [CrossRef]
- A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660–662 (2004). [CrossRef]
- A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and Ph. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007). [CrossRef]
- Z. Wang, H. C. Yuan, and H. Y. Fan, “Nonclassicality of the photon addition-then subtraction coherent state and its decoherence in the photon-loss channel,” J. Opt. Soc. Am. B 28, 1964–1972 (2011). [CrossRef]
- V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007). [CrossRef]
- Y. Yang and F. L. Li, “Nonclassicality of photon-subtracted and photon-added-then-subtracted Gaussian states,” J. Opt. Soc. Am. B 26, 830–835 (2009). [CrossRef]
- J. Lee, J. Kim, and H. Nha, “Demonstrating higher-order nonclassical effects by photon-added classical states: realistic schemes,” J. Opt. Soc. Am. B 26, 1363–1369 (2009). [CrossRef]
- S. Y. Lee, J. Park, S. W. Ji, C. H. R. Ooi, and H. W. Lee, “Nonclassicality generated by photon annihilation-then-creation and creation-then-annihilation operations,” J. Opt. Soc. Am. B 26, 1532–1537 (2009). [CrossRef]
- P. Marek, H. Jeong, and M. S. Kim, “Generating ‘squeezed’ superpositions of coherent states using photon addition and subtraction,” Phys. Rev. A 78, 063811 (2008). [CrossRef]
- S. Y. Lee, S. W. Ji, H. J. Kim, and H. Nha, “Enhancing quantum entanglement for continuous variables by coherent superposition of photon subtraction and addition,” Phys. Rev. A 84, 012302 (2011). [CrossRef]
- H. Nha and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett. 93, 020401 (2004). [CrossRef]
- A. Kitagawa, M. Takeoka, K. Wakui, and M. Sasaki, “Effective squeezing enhancement via measurement-induced non-Gaussian operation and its application to the dense coding scheme,” Phys. Rev. A 72, 022334 (2005). [CrossRef]
- D. E. Browne, J. Eisert, S. Scheel, and M. B. Plenio, “Driving non-Gaussian to Gaussian states with linear optics,” Phys. Rev. A 67, 062320 (2003). [CrossRef]
- M. Dakna, T. Anhut, T. Opatrny, L. Knoll, and D. G. Welsch, “Generating Schrodinger-cat-like states by means of conditional measurements on a beam splitter,” Phys. Rev. A 55, 3184–3194 (1997). [CrossRef]
- H. Y. Fan, “Squeezed states: Operators for two types of one- and two-mode squeezing transformations,” Phys. Rev. A 41, 1526–1532 (1990).
- K. Zhu, Q. Wang, and X. R. Li, “Nonclassical statistical properties of fields in squeezed even and squeezed odd coherent states,” J. Opt. Soc. Am. B 10, 1287–1291 (1993). [CrossRef]
- V. V. Dodonov, “Nonclassical states in quantum optics: a squeezed review of the first 75 years,” J. Opt. B 4, R1–R33 (2002). [CrossRef]
- S. Wang, X. X. Xu, H. C. Yuan, L. Y. Hu, and H. Y. Fan, “Coherent operation of photon subtraction and addition for squeezed thermal states: analysis of nonclassicality and decoherence,” J. Opt. Soc. Am. B 28, 2149–2158 (2011). [CrossRef]
- M. S. Kim, E. Park, P. L. Knight, and H. Jeong, “Nonclassicality of a photon-subtracted Gaussian field,” Phys. Rev. A 71, 043805 (2005). [CrossRef]
- A. Biswas and G. S. Agarwal, “Nonclassicality and decoherence of photon-subtracted squeezed states,” Phys. Rev. A 75, 032104 (2007). [CrossRef]
- L. Y. Hu and H. Y. Fan, “Statistical properties of photon-subtracted squeezed vacuum in thermal environment,” J. Opt. Soc. Am. B 25, 1955–1964 (2008). [CrossRef]
- L. Y. Hu, X. X. Xu, and H. Y. Fan, “Statistical properties of photon-subtracted two-mode squeezed vacuum and its decoherence in thermal environment,” J. Opt. Soc. Am. B 27, 286–299 (2010). [CrossRef]
- D. Stoler, “ Equivalence classes of minimum uncertainty packets,” Phys. Rev. D 1, 3217–3219 (1970). [CrossRef]
- H. P. Yuen and J. H. Shapiro, “Generation and detection of two-photon coherent states in degenerate four-wave mixing,” Opt. Lett. 4, 334–336 (1979). [CrossRef]
- B. Yurke, “Squeezed-coherent-state generation via four-wave mixers and detection via homodyne detectors,” Phys. Rev. A 32, 300–310 (1985). [CrossRef]
- M. Selvadoray, M. S. Kumar, and R. Simon, “Photon distribution in two-mode squeezed coherent states with complex displacement and squeeze parameters,” Phys. Rev. A 49, 4957–4967 (1994). [CrossRef]
- M. Matsuoka and T. Hirano, “Quantum key distribution with a single photon from a squeezed coherent state,” Phys. Rev. A 67, 042307 (2003). [CrossRef]
- A. Luis, “Squeezed coherent states as feasible approximations to phase-optimized states,” Phys. Lett. A 354, 71–78 (2006). [CrossRef]
- H. Y. Fan and M. Xiao, “A spacial type of squeezed coherent state,” Phys. Lett. A 220, 81–86 (1996). [CrossRef]
- G. S. Kumar and V. C. Kuriakose, “Squeezed coherent states representation of scalar field and particle production in the early universe,” Int. J. Theor. Phys. 39, 351–361 (2000). [CrossRef]
- H. Y. Fan, H. L. Lu, and Y. Fan, “Newton-Leibniz integration for ket-bra operators in quantum mechanics and derivation of entangled state representations,” Ann. Phys. 321, 480–494 (2006). [CrossRef]
- S. Y. Lee and H. Nha, “Quantum state engineering by a coherent superposition of photon subtraction and addition,” Phys. Rev. A 82, 053812 (2010). [CrossRef]
- A. Kenfack and K. Zyczkowski, “Negativity of the Wigner function as an indicator of nonclassicality,” J. Opt. B 6, 396–404 (2004). [CrossRef]
- H. Y. Fan and L. Y. Hu, “Time evolution of Wigner function in laser process derived by entangled state representation,” Opt. Commun. 282, 4379–4383 (2009). [CrossRef]
- W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, 2001).
- M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
- H. Paul, “Photon antibunching,” Rev. Mod. Phys. 54, 1061–1102 (1982). [CrossRef]
- R. Short and L. Mandel, “Observation of sub-Poissonian photon statistics,” Phys. Rev. Lett. 51, 384–387 (1983). [CrossRef]
- L. Mandel, “Sub-Poissonian photon statistics in resonance fluorescence,” Opt. Lett. 4, 205–207 (1979). [CrossRef]
- B. Dutta, N. Mukunda, R. Simon, and A. Subramaniam, “Squeezed states, photon-number distributions, and U(1) invariance,” J. Opt. Soc. Am. B 10, 253–264 (1993). [CrossRef]
- R. R. Puri, Mathematical Methods of Quantum Optics (Springer-Verlag, 2001).
- W. L. You, Y. W. Li, and S. J. Gu, “Fidelity, dynamic structure factor, and susceptibility in critical phenomena,” Phys. Rev. E 76, 022101 (2007). [CrossRef]
- L. Y. Hu and H. Y. Fan, “Nonclassicality of photon-added squeezed vacuum and its decoherence in thermal environment,” J. Mod. Opt. 57, 1344–1354 (2010). [CrossRef]
- H. Y. Fan and V. J. Linde, “Similarity transformations in one- and two-mode Fock space,” J. Phys. A 24, 2529–2538(1991).
- L. Y. Hu and H. Y. Fan, “Infinite-dimensional Kraus operators for describing amplitude-damping channel and laser process,” Opt. Commun. 282, 932–935 (2009). [CrossRef]
- H. Y. Fan, “Newton-Leibniz integration for ket-bra operators in quantum mechanics (IV)–Integrations within Weyl ordered product of operators and their application,” Ann. Phys. 323, 500–526 (2008). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.