OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 407–414

Radiation forces on a microsphere in an arbitrary refractive index profile

Kang Soo Lee, Sang Youl Yoon, Kyung Heon Lee, Sang Bok Kim, Hyung Jin Sung, and Sang Soo Kim  »View Author Affiliations


JOSA B, Vol. 29, Issue 3, pp. 407-414 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000407


View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The force equations describing the radiation forces on a microsphere in an arbitrary refractive index profile are derived here by using the photon-stream method in a ray-optics regime. A loosely focused Gaussian beam was employed as the radiating illumination beam. The radiation forces on a spherical microsphere were calculated in a time-varying refractive index profile. The refractive index profile of the surrounding medium was evaluated according to the concentration distribution obtained from the diffusion equation. The scattering and gradient forces on a microsphere were calculated for different refractive indices (1.22, 1.33, 1.43, and 1.59), and the radiation forces on a perfectly reflecting microsphere were calculated. The results were compared with previous results to validate the derivation.

© 2012 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(080.5692) Geometric optics : Ray trajectories in inhomogeneous media

History
Original Manuscript: September 27, 2011
Revised Manuscript: December 1, 2011
Manuscript Accepted: December 1, 2011
Published: February 22, 2012

Citation
Kang Soo Lee, Sang Youl Yoon, Kyung Heon Lee, Sang Bok Kim, Hyung Jin Sung, and Sang Soo Kim, "Radiation forces on a microsphere in an arbitrary refractive index profile," J. Opt. Soc. Am. B 29, 407-414 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-3-407


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–289 (1986). [CrossRef]
  3. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometer steps,” Nature 368, 113–119 (1994). [CrossRef]
  4. A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40, 729–732 (1978). [CrossRef]
  5. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999). [CrossRef]
  6. S. Chu, “The manipulation of neutral particles,” Rev. Mod. Phys. 70, 685–706 (1998). [CrossRef]
  7. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993). [CrossRef]
  8. S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83, 5316–5318 (2003). [CrossRef]
  9. T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12, 4390–4398 (2004). [CrossRef]
  10. S. B. Kim, S. Y. Yoon, H. J. Sung, and S. S. Kim, “Cross-type optical particle separation in a microchannel,” Anal. Chem. 80, 2628–2630 (2008). [CrossRef]
  11. T. Kaneta, Y. Ishidzu, N. Mishima, and T. Imasaka, “Theory of optical chromatography,” Anal. Chem. 69, 2701–2710 (1997). [CrossRef]
  12. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000). [CrossRef]
  13. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992). [CrossRef]
  14. K. T. Gahagan and G. A. Swartzlander, “Trapping of low-index microparticles in an optical vortex,” J. Opt. Soc. Am. B 15, 524–534 (1998). [CrossRef]
  15. H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998). [CrossRef]
  16. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
  17. K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354(1994). [CrossRef]
  18. K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35, 2702–2710 (1996). [CrossRef]
  19. J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration,” Appl. Opt. 43, 2532–2544 (2004). [CrossRef]
  20. J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force,” Appl. Opt. 43, 2545–2554 (2004). [CrossRef]
  21. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989). [CrossRef]
  22. R. Li, X. Han, and K. F. Ren, “Debye series analysis of radiation pressure force exerted on a multilayered sphere,” Appl. Opt. 49, 955–963 (2010). [CrossRef]
  23. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef]
  24. R. C. Gauthier and S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of the force equations,” J. Opt. Soc. Am. B 12, 1680–1686(1995). [CrossRef]
  25. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14, 3323–3333 (1997). [CrossRef]
  26. R. C. Gauthier, “Trapping model for the low-index ring-shaped micro-object in a focused, lowest-order Gaussian laser-beam profile,” J. Opt. Soc. Am. B 14, 782–789 (1997). [CrossRef]
  27. S. B. Kim and S. S. Kim, “Radiation forces on spheres in loosely focused Gaussian beam: ray-optics regime,” J. Opt. Soc. Am. B 23, 897–903 (2006). [CrossRef]
  28. S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, “Automated single-cell sorting system based on optical trapping,” J. Biomed. Opt. 6, 14–22 (2001). [CrossRef]
  29. W. Wang, A. E. Chiou, G. J. Sonek, and M. W. Berns, “Self-aligned dual-beam optical laser trap using photorefractive phase conjugation,” J. Opt. Soc. Am. B 14, 697–704 (1997). [CrossRef]
  30. K. S. Lee, S. B. Kim, K. H. Lee, H. J. Sung, and S. S. Kim, “Three-dimensional microfluidic liquid-core/liquid-cladding waveguide,” Appl. Phys. Lett. 97, 021109 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited