OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 420–428

Steady-state absorption–dispersion properties and four-wave mixing process in a quantum dot nanostructure

Xiangying Hao, Jing Wu, and Ying Wang  »View Author Affiliations

JOSA B, Vol. 29, Issue 3, pp. 420-428 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (834 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



With the presence of the signal pulse, a quantum dot (QD) four-level structure interacting with four fields forms a double-cascade configuration. The linear optical properties for amplification, absorption, and dispersion of two weak near-infrared (NIR) lights in this scheme are investigated. It shows that the amplification, transparency, normal and anomalous dispersion of the probe and signal fields, i.e., the two NIR waves, can be achieved by adjusting the relative phase of the applied lasers, the probe detuning, and the two pump Rabi energies appropriately, while when the signal pulse is removed, the nonlinear optical phenomenon four-wave mixing (FWM) originating from quantum interference is demonstrated. A highly efficient FWM process with a NIR mixing field generated can be realized in this system. Such investigation in a semiconductor QD system with flexible design and widely adjustable parameters may provide new possibilities for realizing the efficient generation and gain of NIR waves and manipulating light propagation between subluminal and superluminal in the solid-state materials.

© 2012 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: September 27, 2011
Revised Manuscript: October 30, 2011
Manuscript Accepted: November 10, 2011
Published: February 22, 2012

Xiangying Hao, Jing Wu, and Ying Wang, "Steady-state absorption–dispersion properties and four-wave mixing process in a quantum dot nanostructure," J. Opt. Soc. Am. B 29, 420-428 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. K. Pathak and S. Hughes, “Generation of entangled photon pairs from a single quantum dot embedded in a planar photonic-crystal cavity,” Phys. Rev. B 79, 205416 (2009).
  2. S. Sasaki, S. De Franceschi, J. M. Elzerman, W. G. van der Wiel, M. Eto, S. Tarucha, and L. P. Kouwenhoven, “Kondo effect in an integer-spin quantum dot,” Nature 405, 764–767 (2000). [CrossRef]
  3. T. Hatano, M. Stopa, and S. Tarucha, “Single-electron delocalization in hybrid vertical-lateral double quantum dots,” Science 309, 268–271 (2005). [CrossRef]
  4. E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, “Optical signatures of coupled quantum dots,” Science 311, 636–639 (2006). [CrossRef]
  5. V. Stavarache, D. Reuter, A. D. Wieck, M. Schwab, D. R. Yakovlev, R. Oulton, and M. Bayer, “Control of quantum dot excitons by lateral electric fields,” Appl. Phys. Lett. 89, 123105 (2006). [CrossRef]
  6. L. He, M. Gong, C.-F. Li, G.-C. Guo, and A. Zunger, “Highly reduced fine-structure splitting in InAs/InP quantum dots offering an Efficient on-demand entangled 1.55 μm photon emitter,” Phys. Rev. Lett. 101, 157405 (2008).
  7. P. K. Nielsen, H. Thyrrestrup, J. Mørk, and B. Tromborg, “Numerical investigation of electromagnetically induced transparency in a quantum dot structure,” Opt. Express 15, 6396–6408 (2007). [CrossRef]
  8. C.-H. Yuan, and K.-D. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052115 (2006).
  9. X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007). [CrossRef]
  10. J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, “Coherent control of tunneling in a quantum dot molecule,” Phys. Rev. B 69, 125342 (2004).
  11. C.-H. Yuan, K.-D. Zhu, and Y.-W. Jiang, “Slow light control with electric fields in vertically coupled InGaAs/GaAs quantum dots,” J. Appl. Phys. 102, 023109 (2007).
  12. J. Li, R. Yu, L.-G. Si, X.-Y. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
  13. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990). [CrossRef]
  14. L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902 (2002).
  15. Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electro magnetically induced transparency,” Phys. Rev. A 67, 013811 (2003).
  16. Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
  17. Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76, 054425 (2007).
  18. H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Backward four-wave mixing in a four-level medium with electromagnetically induced transparency,” J. Opt. Soc. Am. B 23, 718–722 (2006). [CrossRef]
  19. P. S. Hsu, A. K. Patnaik, and G. R. Welch, “Controlled parametric generation in a double-ladder system via all-resonant four-wave mixing,” Opt. Lett. 33, 381–383 (2008). [CrossRef]
  20. F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: The diamond configuration,” Phys. Rev. A 78, 013834 (2008). [CrossRef]
  21. P. S. Hsu, G. R. Welch, J. R. Gord, and A. K. Patnaik, “Propagation dynamics of controlled cross-talk via interplay between χ(1) and χ(3) processes,” Phys. Rev. A 83, 053819 (2011).
  22. J. Kasprzak, W. Langbein, S. Reitzenstein, C. Kistner, C. Schneider, M. Strauss, S. Höfling, and A. Forchel, “Coherent dynamics of one- and two-photon states in a strongly coupled single quantum dot-cavity system,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CMBB7.
  23. J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein, “Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system,” Nature Mater. 9, 304–308 (2010). [CrossRef]
  24. K. Brunner, G. Abstreiter, G. Böhn, G. Tränkle, and G. Weimann, “Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure,” Phys. Rev. Lett. 73, 1138–1141 (1994). [CrossRef]
  25. X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003). [CrossRef]
  26. W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Control of fine-structure splitting and biexciton binding in InxGa1−xAs quantum dots by annealing,” Phys. Rev. B 69, 161301 (2004).
  27. M. Larque, I. R. Philip, and A. Beveratos, “Bell inequalities and density matrix for polarization-entangled photons out of a two-photon cascade in a single quantum dot,” Phys. Rev. A 77, 042118 (2008). [CrossRef]
  28. K. Goshima, K. Komori, T. Sugaya, and T. Takagahara, “Formation and control of acorrelated exciton two-qubit system in a coupled quantum dot,” Phys. Rev. B 79, 205313 (2009).
  29. H. Y. Ramirez, C. H. Lin, C. C. Chao, Y. Hsu, W. T. You, S. Y. Huang, Y. T. Chen, H. C. Tseng, W. H. Chang, S. D. Lin, and S. J. Cheng, “Optical fine structures of highly quantized InGaAs/GaAs self-assembled quantum dots,” Phys. Rev. B 81, 245324 (2010).
  30. C. Ding, X. Hao, J. Li, and X. Yang, “Efficient generation of maximally entangled states via four-wave mixing in a semiconductor quantum-dot nanostructure,” Phys. Lett. A 374, 680–686 (2010). [CrossRef]
  31. W.-X. Yang, A.-X. Chen, R.-K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011).
  32. J. F. Dynes and E. Paspalakis, “Phase control of electron population, absorption, and dispersion properties of a semiconductor quantum well,” Phys. Rev. B 73, 233305 (2006).
  33. Y. Qi, Y. Niu, Y. Xiang, H. Wang, and S. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011). [CrossRef]
  34. A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B Lasers Opt. 79, 65–69 (2004).
  35. C. Zhu and G. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80, 235408 (2009).
  36. Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71053806 (2005).
  37. D. Han, Y. Zeng, H. Guo, W. Chen, H. Lu, and C. Huang, “Effects of the upper level coupling field on lasing without inversion in a V-type system,” Eur. Phys. J. D 42, 489–493 (2007). [CrossRef]
  38. H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73, 011802(R) (2006). [CrossRef]
  39. H. Sun, Y. Niu, S. Jin, and S. Gong, “Phase control of cross-phase modulation with electromagnetically induced transparency,” J. Phys. B 40, 3037–3043 (2007).
  40. L.-G. Wang, S. Qamar, S.-Y. Zhu, and M. S. Zubairy, “Manipulation of the Raman process via incoherent pump, tunable intensity, and phase control,” Phys. Rev. A 77, 033833(2008).
  41. Y. Wu and L. Deng, “Ultraslow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064–2066 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited