OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 463–474

Ultralong photon-echo-based quantum memories using optical locking

Byoung S. Ham  »View Author Affiliations


JOSA B, Vol. 29, Issue 3, pp. 463-474 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000463


View Full Text Article

Enhanced HTML    Acrobat PDF (1581 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Unlike slow-light-based quantum memories, photon echoes offer the benefit of high speed and wide bandwidth. Over the last decade, the rephasing mechanism of photon echoes has been studied for quantum memories to overcome fundamental limitations in photon echoes, such as population inversion and low retrieval efficiency. Although these limitations have been overcome in modified photon echo schemes, photon storage time is still too short to apply it to long-distance quantum communications. For long-distance quantum communications, ultralong photon storage time of the order of seconds is needed to implement quantum repeaters. In this review article, challenging techniques for ultralong photon storage are presented, where ultralong storage is obtained via a coherence conversion process between optical and spin states by using an optical locking technique. To remove population-inversion-caused quantum noise, a double rephasing scheme is addressed, where rephasing-pulse-caused population inversion hinders photon echoes for quantum memory applications.

© 2012 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(300.6240) Spectroscopy : Spectroscopy, coherent transient

ToC Category:
Quantum Optics

History
Original Manuscript: September 13, 2011
Manuscript Accepted: November 7, 2011
Published: February 27, 2012

Citation
Byoung S. Ham, "Ultralong photon-echo-based quantum memories using optical locking," J. Opt. Soc. Am. B 29, 463-474 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-3-463


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002). [CrossRef]
  2. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001). [CrossRef]
  3. F. F. Philips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001). [CrossRef]
  4. O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628–631 (2001). [CrossRef]
  5. C. H. Van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003). [CrossRef]
  6. K. S. Choi, H. Deng, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008). [CrossRef]
  7. I. Novikova, N. B. Philips, and A. V. Gorshkov, “Optimal light storage with full pulse-shape control,” Phys. Rev. A 78, 021802 (2008). [CrossRef]
  8. T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005). [CrossRef]
  9. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004). [CrossRef]
  10. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef]
  11. S. A. Moiseev and S. Kroll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001). [CrossRef]
  12. M. Nilsson and S. Kroll, “Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles,” Opt. Commun. 247, 393–403 (2005). [CrossRef]
  13. S. A. Moiseev, V. F. Tarasov, and B. S. Ham, “Quantum memory photon echo-like techniques in solids,” J. Opt. B 5, S497–S502 (2003). [CrossRef]
  14. H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456, 773–777 (2008). [CrossRef]
  15. A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96, 043602 (2006). [CrossRef]
  16. G. Hetet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100, 023601 (2008). [CrossRef]
  17. B. Hosseini, B. M. Sparkes, G. Sparkes, G. Hetet, J. J. Longdell, and P. K. Lam, “Coherent optical pulse sequencer for quantum applications,” Nature 461, 241–245 (2009). [CrossRef]
  18. M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minar, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010). [CrossRef]
  19. G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009). [CrossRef]
  20. B. S. Ham, “Control of photon storage time using phase locking,” Opt. Express 18, 1704–1713 (2010). [CrossRef]
  21. B. S. Ham, “Ultralong quantum optical storage using an optical locking technique,” Nat. Photon. 3, 518–522 (2009). [CrossRef]
  22. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communications with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef]
  23. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007). [CrossRef]
  24. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998). [CrossRef]
  25. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008). [CrossRef]
  26. L. Jiang, J. M. Taylor, N. Khaneja, and M. D. Lukin, “Optical approach to quantum communication using dynamic programming,” Proc. Natl. Acad. Sci. USA 104, 17291–17296 (2007). [CrossRef]
  27. N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964). [CrossRef]
  28. N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photon based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75, 032327 (2007). [CrossRef]
  29. R. M. Macfarlane and R. M. Shelby, “Coherent transient and holeburning spectroscopy of rare earth ions in solids,” in Spectroscopy of Solids Containing Rare Earth Ions, A. Kaplyanskii and R. M. Macfarlene, eds. (North-Holland, 1987).
  30. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010). [CrossRef]
  31. D. S. Kim, J. Shah, T. C. Damen, W. Schafer, F. Jahnke, S. Schmitt-Rink, and K. Kohler, “Unusually slow temporal evolution of femtosecond four-wave mixing signals in intrinsic GaAa quantum wells: direct evidence for the dominance of interaction effect,” Phys. Rev. Lett. 69, 2725–2728 (1992). [CrossRef]
  32. E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950). [CrossRef]
  33. B. S. Ham and J. Hahn, “Atomic coherence swing in a double-A-type system using ultraslow light,” Opt. Lett. 34, 776–778 (2009). [CrossRef]
  34. V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007). [CrossRef]
  35. M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics79–95 (Addison-Wesley, 1974).
  36. M. Sabooni, F. Beaudoin, A. Walther, N. Amari, M. Huang, and S. Kroll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett. 105, 060501 (2010). [CrossRef]
  37. J. Ruggiero, J.-L. Le Gouet, C. Simon, and T. Chaneliere, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009). [CrossRef]
  38. N. Sangouard, C. Simon, J. Minar, M. Afzelius, T. Chaneliere, and N. Gisin, “Impossibility of faithfully storing single photons with the three-pulse photon echo,” Phys. Rev. A 81, 062333 (2010). [CrossRef]
  39. B. A. Maksimov, Yu. A. Kharitonov, V. V. Ilyukhin, and N. V. Belov, “Crystal structure of Y-oxysilicate Y2(SiO4)O,” Sov. Phys. Dokl. 13, 1188–1190 (1969).
  40. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859–862 (2009). [CrossRef]
  41. T. W. Mossberg, “Time-domain frequency-selective optical data storage,” Opt. Lett. 7, 77–79 (1982). [CrossRef]
  42. B. S. Ham, “On-demand control of photon echoes far exceeding the spin coherence constraint via coherence swapping between optical and spin transitions,” arXiv:1010.4870 (2010).
  43. H. R. Gray, R. M. Whitley, and C. R. Stroud, “Coherent trapping of atomic populations,” Opt. Lett. 3, 218–220 (1978). [CrossRef]
  44. M. Fleischhauer and M. D. Lukin, “Dark-state polariton in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000). [CrossRef]
  45. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997). [CrossRef]
  46. Y. Zhao, C. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79, 641–644 (1997). [CrossRef]
  47. B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997). [CrossRef]
  48. M. Philips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexcition,” Phys. Rev. Lett. 91, 183602 (2003). [CrossRef]
  49. B. S. Ham, “Experimental demonstration of all-optical 1×2 quantum routing,” Appl. Phys. Lett. 85, 893–895 (2004). [CrossRef]
  50. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998). [CrossRef]
  51. H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000). [CrossRef]
  52. B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth doped solid,” Opt. Lett. 22, 1849–1851 (1997). [CrossRef]
  53. B. S. Ham, “Investigation of quantum coherence excitation and coherence transfer in an inhomogeneously broadened rare-earth doped solid,” Opt. Express 16, 5350–5361 (2008). [CrossRef]
  54. B. S. Ham and J. Hahn, “Coherent dynamics of self-induced ultraslow light for all-optical switching,” Opt. Lett. 33, 2880–2882 (2008). [CrossRef]
  55. B. S. Ham, “Observations of delayed all-optical routing in a slow-light regime,” Phys. Rev. A 78, 011808(R) (2008). [CrossRef]
  56. B. S. Ham, “Reversible quantum optical data storage based on resonant Raman optical field excited spin coherence,” Opt. Express 16, 14304–14313 (2008). [CrossRef]
  57. B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Spin coherence excitation and rephrasing with optically shelved atoms,” Phys. Rev. B 58, R11828–R11831 (1998). [CrossRef]
  58. M. Mitsunaga and N. Uesugi, “248-bit optical storage in Eu3+:YalO3 by accumulated photon echoes,” Opt. Lett. 15, 195–197 (1990). [CrossRef]
  59. J. Hahn and B. S. Ham, “Rephasing halted photon echoes using controlled optical deshelving,” New J. Phys. 13, 093011 (2011). [CrossRef]
  60. R. Yano, M. Mitsunaga, and N. Useugi, “Stimulated-photon-echo spectroscopy. I. Spectral diffusion in Eu3+:YalO3,” Phys. Rev. B 45, 12752–12759 (1992). [CrossRef]
  61. K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47, 14741–14752 (1993). [CrossRef]
  62. R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995). [CrossRef]
  63. B. S. Ham, “A contradictory phenomenon of deshelving pulses in a dilute medium used for lengthened photon storage time,” Opt. Express 18, 17749–17755 (2010). [CrossRef]
  64. B. S. Ham, “On-demand control of photon echoes far exceeding the spin coherence constraint via coherence swapping between optical and spin transitions,” arXiv:1010.4870 (2010).
  65. S. A. Moiseev, N. Andrianov, and F. F. Gubaidullin, “Efficient multimode quantum memory based on photon echo in an optical QED cavity,” Phys. Rev. A 82, 022311 (2010). [CrossRef]
  66. B. S. Ham, “Atom phase controlled noise-free photon echoes,” arXiv:1101.5480 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited