OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 521–528

Designing surface plasmon resonance of subwavelength hole arrays by studying absorption

Lin Wu, Ping Bai, and Er Ping Li  »View Author Affiliations


JOSA B, Vol. 29, Issue 4, pp. 521-528 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000521


View Full Text Article

Enhanced HTML    Acrobat PDF (1253 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The surface plasmon (SP) resonance excited at subwavelength cylindrical hole arrays milled in metal films is systematically studied by solving the three-dimensional Maxwell’s equations using the finite element method. The absorption spectrum of the hole arrays, combined with the electric-field distribution, is employed to investigate the plasmon resonance of the patterned metal film. It is found that (i) an SP resonance correlates to a resonant peak in the absorption spectrum, but not all the peaks in the spectrum correlates to the plasmon resonances; (ii) the size variation of the hole array will shift the resonant wavelength, i.e., an increment of 100 nm in the pitch p, the hole diameter d, and the hole depth t leads to a redshift of 60–70, 30–40, or 10–20 nm in the resonant wavelength, respectively; (iii) the maximum enhancement of the electric field on the surface of the metal film corresponds to the highest absorption peak, which can be achieved by designing the p, d, and t of the hole array; and (iv) for small holes (e.g., d=125nm) or shallow holes (e.g., t=100nm), the absorption characteristics of the hole arrays are particularly important as some resonant peaks are missing in their transmission spectra. Our finding is of particular importance in applications such as SP resonance based sensing.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 12, 2011
Revised Manuscript: December 2, 2011
Manuscript Accepted: December 2, 2011
Published: March 2, 2012

Citation
Lin Wu, Ping Bai, and Er Ping Li, "Designing surface plasmon resonance of subwavelength hole arrays by studying absorption," J. Opt. Soc. Am. B 29, 521-528 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-4-521


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef]
  4. Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4, 107–113 (2009). [CrossRef]
  5. Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21, 235201 (2010). [CrossRef]
  6. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008). [CrossRef]
  7. P. Bai, M. X. Gu, X. C. Wei, and E. P. Li, “Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity,” Opt. Express 17, 24349–24357 (2009). [CrossRef]
  8. F. F. Ren, K. W. Ang, J. F. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 97, 091102 (2010). [CrossRef]
  9. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003). [CrossRef]
  10. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008). [CrossRef]
  11. J. N. Anker, W. P. Hall, O. Lyanders, N. C. Shan, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef]
  12. F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81, 4308–4311 (2009). [CrossRef]
  13. A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010). [CrossRef]
  14. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010). [CrossRef]
  15. S. L. Zhu, W. Zhou, G.-H. Park, and E. P. Li, “Numerical design methods of nanostructure array for nanobiosensing,” Plasmonics 5, 267–271 (2010). [CrossRef]
  16. F. Yu, B. Persson, S. Lofas, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76, 6765–6770 (2004). [CrossRef]
  17. Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632(2009). [CrossRef]
  18. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  19. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998). [CrossRef]
  20. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002). [CrossRef]
  21. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004). [CrossRef]
  22. J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Kall, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4, 1003–1007 (2004). [CrossRef]
  23. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651(2004). [CrossRef]
  24. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A 7, S90–S96 (2005). [CrossRef]
  25. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef]
  26. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  27. http://www.comsol.com/ .
  28. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).
  29. M. Bass and E. W. Van Stryland, eds., Handbook of Optics, Vol. 2, 2nd ed. (McGraw-Hill, 1994).
  30. Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Photon. J. 3, 365–374 (2011). [CrossRef]
  31. D. Sarid, “Long range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981). [CrossRef]
  32. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991). [CrossRef]
  33. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef]
  34. T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207–1212 (2007). [CrossRef]
  35. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133, 1308–1346 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited