OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 529–537

Nonclassicality and decoherence of photon-added squeezed thermal state in thermal environment

Li-Yun Hu and Zhi-Ming Zhang  »View Author Affiliations

JOSA B, Vol. 29, Issue 4, pp. 529-537 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (517 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Theoretical analysis is given of nonclassicality and decoherence of the field states generated by adding any number of photons to the squeezed thermal state (STS). Based on the fact that the squeezed number state can be considered as a single-variable Hermite polynomial excited state, the compact expression of the normalization factor is derived, a Legendre polynomial. The nonclassicality is investigated by exploring the sub-Poissonian and negative Wigner function (WF). The results show that the WF of single-photon–added STS (PASTS) always has negative values at the phase space center. The decoherence effect on PASTS is examined by the analytical expression of WF. It is found that a longer threshold value of decay time than in single-photon–subtraction STS is included in single PASTS.

© 2012 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics

ToC Category:
Quantum Optics

Original Manuscript: November 22, 2011
Revised Manuscript: January 6, 2012
Manuscript Accepted: January 10, 2012
Published: March 2, 2012

Li-Yun Hu and Zhi-Ming Zhang, "Nonclassicality and decoherence of photon-added squeezed thermal state in thermal environment," J. Opt. Soc. Am. B 29, 529-537 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer-Verlag, 2000).
  2. M. S. Kim, “Recent developments in photon-level operatoions on travelling light fields,” J. Phys. B 41, 133001–133018 (2008). [CrossRef]
  3. J. Wenger, R. Tualle-Brouri, and P. Grangier, “Non-Gaussian statistics from individual pulses of squeezed light,” Phys. Rev. Lett. 92, 153601 (2004). [CrossRef]
  4. A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660–662 (2004). [CrossRef]
  5. A. Zavatta, S. Viciani, and M. Bellini, “Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission,” Phys. Rev. A 72, 023820–023828 (2005). [CrossRef]
  6. V. Parigi, A. Zavatta, M. S. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007). [CrossRef]
  7. A. Zavatta, V. Parigi, and M. Bellini, “Experimental nonclassicality of single-photon-added thermal light states,” Phys. Rev. A 75, 052106 (2007). [CrossRef]
  8. J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006). [CrossRef]
  9. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and Ph. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83–86 (2006). [CrossRef]
  10. K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express 15, 3568–3574 (2007). [CrossRef]
  11. L.-Y. Hu and H.-Y. Fan, “Statistical properties of photon-added coherent state in a dissipative channel,” Phys. Scr. 79, 035004 (2009). [CrossRef]
  12. A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and Ph. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007). [CrossRef]
  13. D. E. Browne, J. Eisert, S. Scheel, and M. B. Plenio, “Driving non-Gaussian to Gaussian states with linear optics,” Phys. Rev. A 67, 062320 (2003). [CrossRef]
  14. H. Nha and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett. 93, 020401–020404 (2004). [CrossRef]
  15. R. García-Patrón, J. Fiurášek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, “Proposal for a loophole-free Bell test using homodyne detection,” Phys. Rev. Lett. 93, 130409 (2004). [CrossRef]
  16. S. D. Bartlett and B. C. Sanders, “Universal continuous-variable quantum computation: requirement of optical nonlinearity for photon counting,” Phys. Rev. A 65, 042304 (2002). [CrossRef]
  17. H. Jeong, A. P. Lund, and T. C. Ralph, “Production of superpositions of coherent states in traveling optical fields with inefficient photon detection,” Phys. Rev. A 72, 013801 (2005). [CrossRef]
  18. G. S. Agarwal and K. Tara, “Nonclassical properties of states generated by the excitations on a coherent state,” Phys. Rev. A 43, 492–497 (1991). [CrossRef]
  19. G. S. Agarwal and K. Tara, “Nonclassical character of states exhibiting no squeezing or sub-Poissonian statistics,” Phys. Rev. A 46, 485–488 (1992). [CrossRef]
  20. F. Dell’Anno, S. De Siena, L. Albano, and F. Illuminati, “Continuous-variable quantum teleportation with non-Gaussian resources,” Phys. Rev. A 76, 022301 (2007). [CrossRef]
  21. A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, “Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states,” Phys. Rev. A 73, 042310 (2006). [CrossRef]
  22. P. Marek, H. Jeong, and M. S. Kim, “Generating ‘squeezed’ superpositions of coherent states using photon addition and subtraction,” Phys. Rev. A 78, 063811 (2008). [CrossRef]
  23. J. S. Sales and N. G. de Almeida, “Robustness of superposition states evolving under the influence of a thermal reservoir,” Phys. Rev. A 83, 062121 (2011). [CrossRef]
  24. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1998).
  25. V. V. Dodonov, “‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years,” J. Opt. B 4, R1–R33 (2002). [CrossRef]
  26. S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Clarendon Press, 1997).
  27. H.-Y. Fan, H. R. Zaidi, and J. R. Klauder, “New approach for calculating the normally ordered form of squeeze operators,” Phys. Rev. D 35, 1831–1834 (1987). [CrossRef]
  28. A. Wunsche, “Hermite and Laguerre 2D polynomials,” J. Comput. Appl. Math. 133, 665–678 (2001). [CrossRef]
  29. A. Wunsche, “General Hermite and Laguerre two-dimensional polynomials,” J. Phys. A: Math. Nucl. Gen. 33, 1603–1629 (2000). [CrossRef]
  30. L.-Y. Hu and H.-Y. Fan, “Nonclassicality of photon-added squeezed vacuum and its decoherence in thermal environment,” J. Mod. Opt. 57, 1344–1354 (2010). [CrossRef]
  31. H-Y. Fan, Representation and Transformation Theory in Quantum Mechanics—Progress of Dirac’s Symbolic Method (Shanghai Scientific and Technical Press, 1997), p. 174.
  32. H. Y. Fan, “Newton-Leibniz integration for ket-bra operators in quantum mechanics (V)—deriving normally ordered bivariate-normal-distribution form of density operators and developing their phase space formalism,” Ann. Phys. 323, 1502–1528(2008). [CrossRef]
  33. R. R. Puri, Mathematical Methods of Quantum Optics (Springer-Verlag, 2001), Appendix A.
  34. L.-Y. Hu, X.-X. Xu, Z.-S. Wang, and X.-F. Xu, “Photon-subtracted squeezed thermal state: nonclassicality and decoherence,” Phys. Rev. A 82, 043842 (2010). [CrossRef]
  35. L.-Y. Hu and H.-Y. Fan, “Statistical properties of photon-subtracted squeezed vacuum in thermal environment,” J. Opt. Soc. Am. B 25, 1955–1964 (2008). [CrossRef]
  36. L.-Y. Hu and H.-Y. Fan, “Wigner functions of thermo number state, photon subtracted and added thermo vacuum state at finite temperature,” Mod. Phys. Lett. A 24, 2263–2274 (2009). [CrossRef]
  37. L. Mandel, “Sub-Poissonian photon statistics in resonance fluorescence,” Opt. Lett. 4, 205–207 (1979). [CrossRef]
  38. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Elsevier Academic Press, 2005), p. 743.
  39. H. Y. Fan and H. R. Zaidi, “Application of IWOP technique to the generalized Weyl correspondence,” Phys. Lett. A 124, 303–307 (1987). [CrossRef]
  40. L.-Y. Hu, X.-X. Xu, and H.-Y. Fan, “Statistical properties of photon-subtracted two-mode squeezed vacuum and its decoherence in thermal environment,” J. Opt. Soc. Am. B 27, 286–299 (2010). [CrossRef]
  41. C. Gardiner and P. Zoller, Quantum Noise (Springer-Verlag, 2000).
  42. L.-Y. Hu and H.-Y. Fan, “ Time evolution of Wigner function in laser process derived by entangled state representation,” Opt. Commun. 282, 4379–4383 (2009). [CrossRef]
  43. M. G. Genoni, M. G. A. Paris, and K. Banaszek, “Quantifying the non-Gaussian character of a quantum state by quantum relative entropy,” Phys. Rev. A 78, 060303 (2008). [CrossRef]
  44. M. G. Genoni, M. G. A. Paris, and K. Banaszek, “Measure of the non-Gaussian character of a quantum state,” Phys. Rev. A 76, 042327 (2007). [CrossRef]
  45. M. Barbieri, N. Spagnolo, M. G. Genoni, F. Ferreyrol, R. Blandino, M. G. A. Paris, P. Grangier, and R. Tualle-Brouri, “Non-Gaussianity of quantum states: an experimental test on single-photon-added coherent states,” Phys. Rev. A 82, 063833(2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited