OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 538–542

Localized defect modes in dual-periodical multilayer structures based on porous silicon

K. Pérez, J. O. Estevez, A. Méndez-Blas, and J. Arriaga  »View Author Affiliations


JOSA B, Vol. 29, Issue 4, pp. 538-542 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000538


View Full Text Article

Enhanced HTML    Acrobat PDF (506 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an experimental study of the resonance modes in dual-periodical multilayer structures based on porous silicon. These multilayered structures are composed by stacking N times two substructures A, and B, i.e., (AnBm)N. The An and Bm are in turn composed of two different period units, a and b, respectively, where subscripts n and m are the period number in the a and b substructures. Both substructures a and b consist of a pair of alternating layers with high and low refractive indices n1 and n2, respectively. The thickness parameters of the dielectric layers in a and b are all different. We observe several resonance transmission peaks due to the periodical repetition of the AnBm structure. The number of resonance peaks, their full width at half-maximum (FWHM), etc., can be controlled by selecting the structural parameters of the system. The experimental data are in good agreement with those calculated using the transfer matrix method. These optical superlattices are very promising, since they can be designed so that the reflectance response presents a determined number of resonance modes in the most important window for optical communications, making them good candidates for direct applications.

© 2012 Optical Society of America

ToC Category:
Optical Devices

History
Original Manuscript: August 22, 2011
Revised Manuscript: December 12, 2011
Manuscript Accepted: December 13, 2011
Published: March 5, 2012

Citation
K. Pérez, J. O. Estevez, A. Méndez-Blas, and J. Arriaga, "Localized defect modes in dual-periodical multilayer structures based on porous silicon," J. Opt. Soc. Am. B 29, 538-542 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-4-538


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-stated physic and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). [CrossRef]
  3. Y. Fink, J. N. Winn, S. Fan, C. Chen, and J. D. Joannopoulos, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998). [CrossRef]
  4. J. O. Estevez, J. Arriaga, A. Méndez Blas, and V. Agarwal, “Omnidirectional photonic bandgaps in porous silicon based mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett. 93, 191915 (2008). [CrossRef]
  5. J. O. Estevez, J. Arriaga, A. Méndez Blas, and V. Agarwal, “Enlargement of omnidirectional photonic bandgap in porous silicon dielectric mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett. 94, 061914 (2009). [CrossRef]
  6. L. Wang, Z. Wang, Y. Wu, and L. Chen, “Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures,” J. Appl. Phys. 95, 424–426 (2004). [CrossRef]
  7. Z. Wang, L. Wang, Y. Wu, and L. Chen, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004). [CrossRef]
  8. H. Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93, 819–830 (2003). [CrossRef]
  9. M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free-standing coupled microcavities,” Appl. Phys. Lett. 82, 1550–1552 (2003). [CrossRef]
  10. M. D. Huang, Y. H. Lu, S. Y. Park, P. J. Kim, Y. P. Lee, and J. Y. Rhee, “Resonant transmittance in 1-D dielectric dual-component photonic crystals,” J. Korean Phys. Soc. 51, 1531–1535 (2007). [CrossRef]
  11. R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Strong localization of Bloch photons in dual-periodic dielectric multilayer structures,” J. Appl. Phys. 90, 3905–3909 (2001). [CrossRef]
  12. Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003). [CrossRef]
  13. A. G. Yamilov, M. R. Herrera, and M. F. Bertino, “Slow-light effect in dual-periodic photonic lattice,” J. Opt. Soc. Am. B 25, 599–608 (2008). [CrossRef]
  14. L. An and G. P. Wang, “Triple-periodical photonic crystal heterostructures for multichannel ultranarrow transmission filters,” Chin. Phys. Lett. 23, 388–391 (2006). [CrossRef]
  15. V. Agarwal and J. A. del Río, “Tailoring the photonic band gap of a porous silicon dielectric mirror,” Appl. Phys. Lett. 82, 1512–1514 (2003). [CrossRef]
  16. V. S.-Y. Lin, K. Motesharei, K-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997). [CrossRef]
  17. G. Palestino, R. Legros, V. Agarwal, E. Pérez, and C. Gergely, “Functionalization of nanostructured porous silicon microcavities for glucose oxidase detection,” Sens. Act. 135, 27–34 (2008).
  18. J. Escorcia-García, V. Agarwal, and P. Parmananda, “Noise mediated regularity of porous silicon nanostructures,” Appl. Phys. Lett. 94, 133103 (2009). [CrossRef]
  19. M. Ghulinyan, B. Gelloz, T. Ohta, L. Pavesi, D. J. Lockwood, and N. Koshida, “Stabilized porous silicon optical superlattices with controlled surface passivation,” Appl. Phys. Lett. 93, 061113 (2008). [CrossRef]
  20. V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).
  21. R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003). [CrossRef]
  22. M. Ghulinyan, C. J. Oton, Z. Gaburro, and L. Pavesi, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005). [CrossRef]
  23. P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photon. 1, 172–175 (2007). [CrossRef]
  24. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000). [CrossRef]
  25. A. E. Pap, K. Kordás, J. Vähäkangas, A. Uusimäki, S. Leppävuori, L. Pilon, and S. Szatmári, “Optical properties of porous silicon. Part III: Comparison of experimental and theoretical results,” Opt. Mater. (Amsterdam) 28, 506–513 (2006). [CrossRef]
  26. P. Yeh, Optical Waves in Layered Media (Wiley VCH, 1988).
  27. J. Arriaga and X. I. Saldaña, “Band structure and reflectivity of omnidirectional Si-based mirrors with a Gaussian profile refractive index,” J. Appl. Phys. 100, 044911 (2006). [CrossRef]
  28. S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-porpuse software for optical characterization of thin films: specific features for microelectronic applications,” Sol. State Electron. 45, 703–709 (2001). [CrossRef]
  29. A. Mortezaali, S. Ramezani Sani, and F. Javani Jooni, “Correlation between porosity of porous silicon and optoelectronic properties,” J. Non-Oxide Glass. 1, 293–299 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited