OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 553–558

Optimizing the design of planar heterostructures for plasmonic waveguiding

Dayan Handapangoda, Ivan D. Rukhlenko, and Malin Premaratne  »View Author Affiliations

JOSA B, Vol. 29, Issue 4, pp. 553-558 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (403 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate planar heterostructures for subwavelength guiding of surface plasmon modes and optimize their design to enhance the waveguiding efficiency. We show that by appropriately selecting the thicknesses of metallic and dielectric layers of a two-layer waveguide, one can compensate the intrinsic damping of the mode by having minimal optical gain in the dielectric region. We also reveal that mode confinement can be significantly improved by the use of an additional metal layer adjacent to the dielectric, to form a metal–dielectric–metal (MDM) structure. By varying the layer thicknesses in the MDM waveguide, we demonstrate that the propagation length of the plasmonic mode can be maximized. We further show that the losses may be suppressed by minimal gain in the dielectric region by the careful choice of geometrical parameters. We note that the associated gain levels are relatively small; for example, the losses in a 300 nm thick Ag–ZnO–Ag waveguide can be compensated by a gain of 225cm1. Our results may prove useful for the realization of efficient optical interconnects in high-density nanophotonic circuity.

© 2012 Optical Society of America

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optical Devices

Original Manuscript: October 28, 2011
Revised Manuscript: January 27, 2012
Manuscript Accepted: January 30, 2012
Published: March 6, 2012

Dayan Handapangoda, Ivan D. Rukhlenko, and Malin Premaratne, "Optimizing the design of planar heterostructures for plasmonic waveguiding," J. Opt. Soc. Am. B 29, 553-558 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010). [CrossRef]
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors Actuators B 54, 3–15 (1999). [CrossRef]
  3. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14, R597–R624 (2002). [CrossRef]
  4. J. Koglin, U. C. Fischer, and H. Fuchs, “Material contrast in scanning near-field optical microscopy at 1–10 nm resolution,” Phys. Rev. B 55, 7977–7984 (1997). [CrossRef]
  5. L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995). [CrossRef]
  6. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–62 (2007). [CrossRef]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  8. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef]
  9. A. Pannipitiya, I. D. Rukhlenko, and M. Premaratne, “Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions,” IEEE J. Photon. 3, 220–233 (2011). [CrossRef]
  10. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  11. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981). [CrossRef]
  12. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16, 14902–14909 (2008). [CrossRef]
  13. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997). [CrossRef]
  14. D. Handapangoda, M. Premaratne, I. D. Rukhlenko, and C. Jagadish, “Optimal design of composite nanowires for extended reach of surface plasmon-polaritons,” Opt. Express 19, 16058–16074 (2011). [CrossRef]
  15. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76, 035434 (2007). [CrossRef]
  16. D. F. P. Pile, T. Ogawa, D. K. Gramontnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005). [CrossRef]
  17. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005). [CrossRef]
  18. S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258, 295–299 (2006). [CrossRef]
  19. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998). [CrossRef]
  20. I. B. Udagedara, I. D. Rukhlenko, and M. Premaratne, “Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: the role of optical gain and chain layout,” Opt. Express 19, 19973–19986 (2011). [CrossRef]
  21. A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” J. Opt. A 11, 114001 (2009). [CrossRef]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  23. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008). [CrossRef]
  24. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008). [CrossRef]
  25. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004). [CrossRef]
  26. D. Handapangoda, I. D. Rukhlenko, M. Premaratne, and C. Jagadish, “Optimization of gain-assisted waveguiding in metal–dielectric nanowires,” Opt. Lett. 35, 4190–4192 (2010). [CrossRef]
  27. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  28. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  29. M. Premaratne and G. P. Agrawal, Light Propagation in Gain Media: Optical Amplifiers (Cambridge University, 2011).
  30. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics(Wiley, 1991).
  31. J. Hecht, The Laser Guidebook (McGraw-Hill, 1992).
  32. S. C. Fleming and T. J. Whitley, “Measurement and analysis of pump-dependent refractive index and dispersion effects in erbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 32, 1113–1121 (1996). [CrossRef]
  33. E. Desurvire, “Study of the complex atomic susceptibility of erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1517–1527 (1990). [CrossRef]
  34. S. C. Fleming and T. J. Whitley, “Measurement of pump induced refractive index change in erbium doped fibre amplifier,” Electron. Lett. 27, 1959–1961 (1991). [CrossRef]
  35. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications,” Opt. Express 19, 206–217 (2011).
  36. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors—Numerical Data and Graphical Information (Springer, 1999).
  37. Y. Chen, N. T. Tuan, Y. Segawa, H. Ko, S. Hong, and T. Yao, “Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers,” Appl. Phys. Lett. 78, 1469–1471 (2001). [CrossRef]
  38. Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth 287, 169–179 (2006). [CrossRef]
  39. H. Morkoc and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH Verlag, 2009).
  40. J. Lo, W. Lien, C. Lin, and J. He, “Er-doped ZnO nanorod arrays with enhanced 1540 nm emission by employing Ag island films and high-temperature annealing,” ACS Appl. Mater. Interf. 3, 1009–1014 (2011). [CrossRef]
  41. J. Wang, S. K. Hark, and Q. Li, “Electronic structure and luminescence properties of Er doped ZnO nanowires,” Microsc. Microanal. 12, 748–749 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited