OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 559–571

Hamiltonian tools for the analysis of optical polarization control

Elie Assémat, Antonio Picozzi, Hans-Rudolf Jauslin, and Dominique Sugny  »View Author Affiliations


JOSA B, Vol. 29, Issue 4, pp. 559-571 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000559


View Full Text Article

Enhanced HTML    Acrobat PDF (1004 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The study of the polarization dynamics of two counterpropagating beams in optical fibers has recently been the subject of a growing renewed interest, from both the theoretical and experimental points of view. This system exhibits a phenomenon of polarization attraction, which can be used to achieve a complete polarization of an initially unpolarized signal beam, almost without any loss of energy. Along the same way, an arbitrary polarization state of the signal beam can be controlled and converted into any other desired state of polarization, by adjusting the polarization state of the counterpropagating pump beam. These properties have been demonstrated in various different types of optical fibers, i.e., isotropic fibers, spun fibers, and telecommunication optical fibers. This article is aimed at providing a rather complete understanding of this phenomenon of polarization attraction on the basis of new mathematical techniques recently developed for the study of Hamiltonian singularities. In particular, we show the essential role that play the peculiar topological properties of singular tori in the process of polarization attraction. We provide here a pedagogical introduction to this geometric approach of Hamiltonian singularities and give a unified description of the polarization attraction phenomenon in various types of optical fiber systems.

© 2012 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.0190) Nonlinear optics : Nonlinear optics
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 18, 2011
Revised Manuscript: December 2, 2011
Manuscript Accepted: December 8, 2011
Published: March 6, 2012

Citation
Elie Assémat, Antonio Picozzi, Hans-Rudolf Jauslin, and Dominique Sugny, "Hamiltonian tools for the analysis of optical polarization control," J. Opt. Soc. Am. B 29, 559-571 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-4-559


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, “Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling,” Opt. Lett. 25, 257–259 (2000). [CrossRef]
  2. A. Picozzi, “Spontaneous polarization induced by natural thermalization of incoherent light,” Opt. Express 16, 17171–17185 (2008). [CrossRef]
  3. S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88–94 (2005). [CrossRef]
  4. D. Sugny, A. Picozzi, S. Lagrange, and H. R. Jauslin, “Role of singular tori in the dynamics of spatiotemporal nonlinear wave systems,” Phys. Rev. Lett. 103, 034102 (2009). [CrossRef]
  5. S. Lagrange, D. Sugny, A. Picozzi, and H. R. Jauslin, “Singular tori as attractors of four-wave-interaction systems,” Phys. Rev. E 81, 016202 (2010). [CrossRef]
  6. E. Assemat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35, 2025–2027 (2010). [CrossRef]
  7. V. V. Kozlov and S. Wabnitz, “Theoretical study of polarization attraction in high birefringence and spun fibers,” Opt. Lett. 35, 3949–3951 (2010). [CrossRef]
  8. V. V. Kozlov and S. Wabnitz, “Instability of optical solitons in the boundary value problem for a medium of finite extension,” Lett. Math. Phys. 96, 405–413 (2011). [CrossRef]
  9. V. V. Kozlov, J. Nuno, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers,” J. Opt. Soc. Am. B 28, 100–108 (2011). [CrossRef]
  10. E. Assemat, A. Picozzi, H. R. Jauslin, and D. Sugny, “Instabilities of optical solitons and Hamiltonian singular solutions in a medium of finite extension,” Phys. Rev. A 84, 013809 (2011). [CrossRef]
  11. E. Assémat, D. Dargent, A. Picozzi, H. R. Jauslin, and D. Sugny, “Polarization control in spun and telecommunication optical fibers,” Opt. Lett. 36, 4038–4041 (2011). [CrossRef]
  12. E. Assémat, C. Michel, A. Picozzi, H. R. Jauslin, and D. Sugny, “Manifestation of Hamiltonian monodromy in nonlinear wave systems,” Phys. Rev. Lett. 106, 014101 (2011). [CrossRef]
  13. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counterpropagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16, 6646–6651 (2008). [CrossRef]
  14. J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18, 15311–15317 (2010). [CrossRef]
  15. V. V. Kozlov, J. Fatome, P. Morin, S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear repolarization dynamics in optical fibers: transient polarization attraction,” J. Opt. Soc. Am. B 28, 1782–1791 (2011). [CrossRef]
  16. P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40  Gbit/s regeneration applications,” Opt. Express 19, 17158–17166 (2011). [CrossRef]
  17. D. J. Gauthier, M. S. Malcuit, A. L. Gaeta, and R. W. Boyd, “Polarization bistability of counterpropagating laser beams,” Phys. Rev. Lett. 64, 1721–1724 (1990). [CrossRef]
  18. G. Gregori and S. Wabnitz, “New exact solutions and bifurcations in the spatial distribution of polarization in third-order nonlinear optical interactions,” Phys. Rev. Lett. 56, 600–603 (1986). [CrossRef]
  19. A. L. Gaeta, R. W. Boyd, J. R. Ackerhalt, and P. W. Milonni, “Instabilities and chaos in the polarizations of counterpropagating light fields,” Phys. Rev. Lett. 58, 2432–2435 (1987). [CrossRef]
  20. M. V. Tratnik and J. E. Sipe, “Nonlinear polarization dynamics. III. Spatial polarization chaos in counterpropagating beams,” Phys. Rev. A 36, 4817–4822 (1987). [CrossRef]
  21. S. Trillo and S. Wabnitz, “Intermittent spatial chaos in the polarization of counterpropagating beams in a birefringent optical fiber,” Phys. Rev. A 36, 3881–3884 (1987). [CrossRef]
  22. M. V. Tratnik and J. E. Sipe, “Nonlinear polarization dynamics. II. Counterpropagating-beam equations: New simple solutions and the possibilities for chaos,” Phys. Rev. A 35, 2976–2988 (1987). [CrossRef]
  23. A. L. Gaeta and R. W. Boyd, “Transverse instabilities in the polarizations and intensities of counterpropagating light waves,” Phys. Rev. A 48, 1610–1624 (1993). [CrossRef]
  24. S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett. 81, 1409–1412 (1998). [CrossRef]
  25. S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: theory and experiments,” J. Opt. Soc. Am. B 18, 432–443 (2001). [CrossRef]
  26. S. Wabnitz, “Chiral polarization solitons in elliptically birefringent spun optical fibers,” Opt. Lett. 34, 908–910 (2009). [CrossRef]
  27. D. David, D. D. Holm, and M. V. Tratnik, “Hamiltonian chaos in nonlinear optical polarization dynamics,” Phys. Rep. 187, 281–367 (1990). [CrossRef]
  28. R. H. Cushman and L. M. Bates, Global Aspects of Classical Integrable Systems (Birkhauser, 1997).
  29. K. Efstathiou and D. A. Sadovskii, “Normalization and global analysis of perturbations of the hydrogen atom,” Rev. Mod. Phys. 82, 2099–2154 (2010). [CrossRef]
  30. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, 2003).
  31. E. Assémat, K. Efstathiou, M. Joyeux, and D. Sugny, “Fractional bidromy in the vibrational spectrum of HOCl,” Phys. Rev. Lett. 104, 113002 (2010). [CrossRef]
  32. R. H. Cushman, H. R. Dullin, A. Giacobbe, D. D. Holm, M. Joyeux, P. Lynch, D. A. Sadovskii, and B. I. Zhilinskii, “CO2 molecule as a quantum realization of the 1∶1∶2 resonant swing-spring with monodromy,” Phys. Rev. Lett. 93, 024302 (2004). [CrossRef]
  33. D. Sugny, P. Mardesic, M. Pelletier, J. Jebrane, and H. R. Jauslin, “Fractional Hamiltonian monodromy from a Gauss-Manin monodromy,” J. Math. Phys. 49, 042701 (2008). [CrossRef]
  34. V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, 1989).
  35. M. Grenier, H.-R. Jauslin, C. Klein, and V. B. Matveev, “Wave attraction in resonant counter-propagating wave systems,” J. Math. Phys. 52, 082704 (2011). [CrossRef]
  36. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, 1965).
  37. M. Joyeux, “Classical dynamics of the 1∶1, 1∶2 and 1∶3 resonance Hamiltonians,” Chem. Phys. 203, 281–307 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited