OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 572–576

Twisted vector field from an inhomogeneous and anisotropic metamaterial

Ming Kang, Jing Chen, Xi-Lin Wang, and Hui-Tian Wang  »View Author Affiliations


JOSA B, Vol. 29, Issue 4, pp. 572-576 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000572


View Full Text Article

Enhanced HTML    Acrobat PDF (1828 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a metamaterial design for realizing inhomogeneous and anisotropic effective media based on the localized waveguide resonance mechanism. Such a design can be easily achieved in experiment and enables us to simultaneously manipulate the wavefront and the state of polarization of the transmitted electromagnetic field by the polarization-sensitive extraordinary optical transmission. Numerical simulations, including the generation of the hybridized vector fields (especially twisted vector fields that are azimuthally polarized carrying a helical phase), prove the feasibility of our proposal. It could be expected as a good candidate of the specially designed subwavelength element for creating the exotic vector fields beyond the functionality of the existing vector fields in a wide spectral regime, especially the terahertz and radio regimes.

© 2012 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

History
Original Manuscript: August 12, 2011
Revised Manuscript: November 19, 2011
Manuscript Accepted: December 1, 2011
Published: March 6, 2012

Citation
Ming Kang, Jing Chen, Xi-Lin Wang, and Hui-Tian Wang, "Twisted vector field from an inhomogeneous and anisotropic metamaterial," J. Opt. Soc. Am. B 29, 572-576 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-4-572


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef]
  2. X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nature Materials 7, 435–441 (2008). [CrossRef]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]
  5. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006). [CrossRef]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  7. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  8. F. J. García-Vidal, Esteban Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005). [CrossRef]
  9. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004). [CrossRef]
  10. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006). [CrossRef]
  11. L. T. Vuong, A. J. L. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104, 083903 (2010). [CrossRef]
  12. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]
  13. C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007). [CrossRef]
  14. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007). [CrossRef]
  15. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005). [CrossRef]
  16. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151–2153 (2006). [CrossRef]
  17. H. Kawauchi, Y. Kozawa, and S. Sato, “Generation of radially polarized Ti:sapphire laser beam using a c-cut crystal,” Opt. Lett. 33, 1984–1986 (2008). [CrossRef]
  18. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32, 3272–3274 (2007). [CrossRef]
  19. M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008). [CrossRef]
  20. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002). [CrossRef]
  21. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008). [CrossRef]
  22. M. A. A. Neil, F. Massoumian, R. Juskaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett. 27, 1929–1931 (2002). [CrossRef]
  23. X. L. Wang, Y. N. Li, J. Chen, C. S. Guo, J. P. Ding, and H. T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010). [CrossRef]
  24. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006). [CrossRef]
  25. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27, 1141–1143 (2002). [CrossRef]
  26. E. Hasman, G. Biener, A. Niv, and V. Kleiner, “Space-variant polarization manipulation,” Prog. Opt. 47, 215–289 (2005) and references therein. [CrossRef]
  27. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011). [CrossRef]
  28. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24, 584–586 (1999). [CrossRef]
  29. X. Hao, C. F. Kuang, T. T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett. 35, 3928–3930 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited