OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 594–599

Near-field optical resonance and enhancement of a plasmonic nanocrescent cylinder tuned by a proximal plasmonic nanostructure

G. V. Pavan Kumar  »View Author Affiliations


JOSA B, Vol. 29, Issue 4, pp. 594-599 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000594


View Full Text Article

Enhanced HTML    Acrobat PDF (692 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Sharp geometrical features in crescent-shaped plasmonic nanostructures facilitate electromagnetic hot spots that can be harnessed for sensitive detection of molecules and nanomaterials. For a given geometry of nanocrescent cylinder, the near-field optical resonance and enhancement are constants. It is desirable to tune this resonance and enhancement without altering the geometry of the nanocrescent cylinder. Herein, we numerically show how the near-field resonance and enhancement at the tip of a nanocrescent cylinder can be proximally tuned by incorporating a plasmonic nanostrip in the vicinity. Geometrical parameters, such as the nanocrescent cylinder–nanostrip distance (g) and length (l) of the nanostrip, were varied to tune the near-field optical properties. Our analysis revealed (i) an increment in near-field enhancement at the tip of the nanocrescent cylinder in the presence of a plasmonic nanostrip; (ii) a redshift in the dipolar plasmon mode accompanied by an increase in the near-field enhancement by decreasing g and increasing l, independently; and (iii) variation in the near-field enhancement of plasmonic modes as a function of the excitation angle. Such tunable plasmonic configurations offer capabilities to design wavelength-tuned optical devices without altering the base geometry.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Surface Plasmons

History
Original Manuscript: October 4, 2011
Revised Manuscript: November 24, 2011
Manuscript Accepted: December 22, 2011
Published: March 12, 2012

Citation
G. V. Pavan Kumar, "Near-field optical resonance and enhancement of a plasmonic nanocrescent cylinder tuned by a proximal plasmonic nanostructure," J. Opt. Soc. Am. B 29, 594-599 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-4-594


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  5. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–62 (2007). [CrossRef]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  7. M. Pelton, J. Aizpurua, and G. Bryant, “Metal–nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008). [CrossRef]
  8. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985). [CrossRef]
  9. E. C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2009).
  10. G. Moula and R. F. Aroca, “Plasmon-enhanced resonance Raman scattering and fluorescence in Langmuir–Blodgett monolayers,” Anal. Chem. 83, 284–288 (2011). [CrossRef]
  11. S. Kawata and V. M. Shalaev, eds., Tip Enhancement (Elsevier, 2007).
  12. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009). [CrossRef]
  13. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011). [CrossRef]
  14. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef]
  15. S. Zhang, H. Liu, and G. Mu, “Electromagnetic enhancement by a periodic array of nanogrooves in a metallic substrate,” J. Opt. Soc. Am. A 28, 879–886 (2011). [CrossRef]
  16. H. Xu, H. Li, Z. Liu, S. Xie, X. Zhou, X. Peng, and X. Xu, “Effects of symmetry breaking on plasmon resonance in a noncoaxial nanotube and nanotube dimer,” J. Opt. Soc. Am. A 28, 1662–1667 (2011). [CrossRef]
  17. G. L. Liu, Y. Lu, J. Kim, J. C. Doll, and L. P. Lee, “Magnetic nanocrescents as controllable surface-enhanced Raman scattering nanoprobes for biomolecular imaging,” Adv. Mater. 17, 2683–2688 (2005). [CrossRef]
  18. J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. 17, 2131–2134 (2005). [CrossRef]
  19. L. Yu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005). [CrossRef]
  20. R. Bukasov and J. S. Shumaker-Parry, “Highly tunable infrared extinction properties of gold nanocrescents,” Nano Lett. 7, 1113–1118 (2007). [CrossRef]
  21. H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” New J. Phys. 9, 53 (2007). [CrossRef]
  22. Y. Zhang, T. Q. Jia, D. H. Feng, and Z. Z. Xu, “Quadrupole plasmon resonance mode in nanocrescent/nanodisk structure: local field enhancement and tunability in the visible light region,” Appl. Phys. Lett. 98, 163110 (2011). [CrossRef]
  23. A. Aubry, D. Y. Lei, A. I. Fernandez-Dominguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10, 2574–2579 (2010). [CrossRef]
  24. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: the crescent-shaped cylinder,” Phys. Rev. B 82, 125430 (2010). [CrossRef]
  25. B. M. Ross and L. P. Lee, “Plasmon tuning and local field enhancement maximization of the nanocrescent,” Nanotechnology 19, 275201 (2008). [CrossRef]
  26. L. Feng, D. Van Orden, M. Abashin, Q. J. Wang, Y. F. Chen, V. Lomakin, and Y. Fainman, “Nanoscale optical field localization by resonantly focused plasmons,” Opt. Express 17, 4824–4832 (2009). [CrossRef]
  27. K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19, 145305 (2008). [CrossRef]
  28. L. Y. Wu, B. M. Ross, and L. P. Lee, “Optical properties of the crescent-shaped nanohole antenna,” Nano Lett. 9, 1956–1961 (2009). [CrossRef]
  29. R. Bukasov, T. A. Ali, P. Nordlander, and J. S. Shumaker-Parry, “Probing the plasmonic near-field of gold nanocrescent antennas,” ACS Nano 4, 6639–6650 (2010). [CrossRef]
  30. A. Unger, U. Rietzler, R. Berger, and M. Kreiter, “Sensitivity of crescent-shaped metal nanoparticles to attachment of dielectric colloids,” Nano Lett. 9, 2311–2315 (2009). [CrossRef]
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  32. B. Pettinger, K. F. Domke, D. Zhang, G. Picardi, and R. Schuster, “Tip-enhanced Raman scattering: influence of the tip-surface geometry on optical resonance and enhancement,” Surf. Sci. 603, 1335–1341 (2009). [CrossRef]
  33. R. Berndt, J. K. Gimzewski, and P. Johansson, “Electromagnetic interactions of metallic objects in nanometer proximity,” Phys. Rev. Lett. 71, 3493–3496 (1993). [CrossRef]
  34. B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B 76, 113409 (2007). [CrossRef]
  35. M.-J. Sung, Y.-F. Ma, Y.-F. Chau, and D.-W. Huang, “Surface plasmon resonance in a hexagonal nanostructure formed by seven core shell nanocylinders,” Appl. Opt. 49, 920–926 (2010). [CrossRef]
  36. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. Van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010). [CrossRef]
  37. G. V. Pavan Kumar, “Near-field optical properties of silver nanocylinders arranged in a Pascal triangle,” Appl. Opt. 49, 6872–6877 (2010). [CrossRef]
  38. A. Alu and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008). [CrossRef]
  39. A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited