OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 607–613

Theoretical investigation on gain recovery dynamics in step quantum well semiconductor optical amplifiers

Cui Qin, Xi Huang, and Xinliang Zhang  »View Author Affiliations

JOSA B, Vol. 29, Issue 4, pp. 607-613 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (501 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, gain recovery dynamic characteristics in the step quantum well (QW) semiconductor optical amplifier (SOA) are theoretically investigated via a detailed model. We numerically solve the coupled rate equations including microscopically calculated carrier-phonon scattering rates between the carrier reservoir and the ground state on the basis of Fermi’s golden rule. The carrier-phonon scattering rates are given as functions of the width and height of the step in the QW of the SOA. It is demonstrated that the electron scattering rate in the step QW SOA depends on the potential parameters of the carrier reservoir region. Finally, it is shown that the SOA with a larger transition rate has a shorter carrier recovery time than the other SOAs via analyzing and comparing the gain and phase recovery dynamics in different types of SOA samples.

© 2012 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:

Original Manuscript: October 13, 2011
Manuscript Accepted: December 4, 2011
Published: March 16, 2012

Cui Qin, Xi Huang, and Xinliang Zhang, "Theoretical investigation on gain recovery dynamics in step quantum well semiconductor optical amplifiers," J. Opt. Soc. Am. B 29, 607-613 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Liu, E. Tangdiongga, Z. Li, Z. Shaoxian, Huug de Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160  gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24, 230–236 (2006). [CrossRef]
  2. S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3, 1131–1145 (1997). [CrossRef]
  3. F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 784–786 (1998). [CrossRef]
  4. J. Mork, M. Willatzen, J. Mark, M. Preisel, and C. P. Seltzer, “Characterization and modelling of ultrafast carrier dynamics in quantum well optical amplifiers,” Proc. SPIE 2146, 52–67 (1994). [CrossRef]
  5. P. Borri, S. Schneider, W. Langbein, and D. Bimberg, “Ultrafast carrier dynamics in InGaAs quantum dot materials and devices,” J. Opt. A 8, S33–S46 (2006). [CrossRef]
  6. J. Xu, Y. Ding, C. Peucheret, W. Xue, J. Seoane, B. Zsigri, P. Jeppesen, and J. Mørk, “Simple and efficient methods for the accurate evaluation of patterning effects in ultrafast photonic switches,” Opt. Express 19, 155–161 (2011). [CrossRef]
  7. N. Majer, K. Lüdge, and E. Schöll, “Cascading enables ultrafast gain recovery dynamics of quantum dot semiconductor optical amplifiers,” Phys. Rev. B 82, 235301 (2010). [CrossRef]
  8. A. V. Uskov, J. Mørk, B. Tromborg, T. W. Berg, I. Magnusdottir, and E. P. O’Reilly, “On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers,” Opt. Commun. 227, 363–369 (2003). [CrossRef]
  9. V. V. Lysak, H. Kawaguchi, I. A. Sukhoivanov, T. Katayama, and A. V. Shulika, “Ultrafast gain dynamics in asymmetrical multiple quantum-well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 41, 797–807 (2005). [CrossRef]
  10. H. Sun, Q. Wang, H. Dong, G. Zhu, N. Dutta, and J. Jaques, “Gain dynamics and saturation property of a semiconductor optical amplifier with a carrier reservoir,” IEEE Photon. Technol. Lett. 18, 196–198 (2006). [CrossRef]
  11. P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures(Wiley, 2005).
  12. T. W. Berg and J. Mork, “Saturation and noise properties of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 40, 1527–1539 (2004). [CrossRef]
  13. C. Chang and S. Chuang, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1, 218–229 (1995). [CrossRef]
  14. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).
  15. M. J. Connelly, “Wideband semiconductor optical amplifier steady-state numerical model,” IEEE J. Quantum Electron. 37, 439–447 (2001). [CrossRef]
  16. J. Dailey and T. Koch, “Simple rules for optimizing asymmetries in SOA-based Mach–Zehnder wavelength converters,” J. Lightwave Technol. 27, 1480–1488 (2009). [CrossRef]
  17. B. Bauer, F. Henry, and R. Schimpe, “Gain stabilization of a semiconductor optical amplifier by distributed feedback,” IEEE Photon. Technol. Lett. 6, 182–185 (1994). [CrossRef]
  18. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990). [CrossRef]
  19. R. Loudon, The Quantum Theory of Light (Oxford University, 1983).
  20. S. Weiss, J. M. Wiesenfeld, D. S. Chemla, G. Raybon, G. Sucha, M. Wegener, G. Eisenstein, C. A. Burrus, A. G. Dentai, U. Koren, B. I. Miller, H. Temkin, R. A. Logan, and T. Tanbun-Ek, “Carrier capture times in 1.5 μm multiple quantum well optical amplifiers,” Appl. Phys. Lett. 60, 9–11 (1992). [CrossRef]
  21. G. Eisenstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, “Gain recovery time of traveling-wave semiconductor optical amplifiers,” Appl. Phys. Lett. 54, 454–456 (1989). [CrossRef]
  22. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323–2325 (2006). [CrossRef]
  23. X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47, 819–826 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited