OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 621–624

Microwave propagation in a graphenelike photonic crystal slab

Yanhong Liu, Li He, and Yunlong Shi  »View Author Affiliations

JOSA B, Vol. 29, Issue 4, pp. 621-624 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (639 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we investigate the transport properties of microwaves in a two-dimensional (2D) graphenelike photonic crystal (PC) slab. We realize a narrow electromagnetic (EM) beam by using a grounded coplanar waveguide with better direction, which is beneficial to the study of the transport properties of (2D) PCs. The extremal transmission of the microwave near the Dirac point in a graphenelike PC slab, being inversely proportional to the thickness of the sample, is demonstrated by means of numerical simulation. Furthermore, we verify experimentally that some certain EM field modes for photonic bands cannot be excited in the PC slab.

© 2012 Optical Society of America

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(350.4010) Other areas of optics : Microwaves
(160.5298) Materials : Photonic crystals

ToC Category:
Physical Optics

Original Manuscript: October 11, 2011
Revised Manuscript: December 3, 2011
Manuscript Accepted: December 4, 2011
Published: March 16, 2012

Yanhong Liu, Li He, and Yunlong Shi, "Microwave propagation in a graphenelike photonic crystal slab," J. Opt. Soc. Am. B 29, 621-624 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004). [CrossRef]
  2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009). [CrossRef]
  3. C. W. Beenakker, “Colloquium: Andreev reflection and Klein tunneling in graphene,” Rev. Mod. Phys. 80, 1337–1354 (2008). [CrossRef]
  4. P. R. Wallace, “The band theory of graphite,” Phys. Rev. 71, 622–634 (1947). [CrossRef]
  5. T. Ando, “Theory of electronic states and transport in carbon nanotubes,” J. Phys. Soc. Jpn. 74, 777–817 (2005). [CrossRef]
  6. M. I. Katsnelson, “Zitterbewegung, chirality, and minimal conductivity in graphene,” Eur. Phys. J. B 51, 157–160 (2006). [CrossRef]
  7. R. A. Sepkhanov, Ya. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A 75, 063813 (2007). [CrossRef]
  8. S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008). [CrossRef]
  9. X. Zhang and Z. Liu, “Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals,” Phys. Rev. Lett. 101, 264303 (2008). [CrossRef]
  10. X. D. Zhang, “Demonstration of a new transport regime of photon in two-dimensional photonic crystal,” Phys. Lett. A 372, 3512–3516 (2008). [CrossRef]
  11. S. R. Zandbergen and M. J. A. de Dood, “Experimental observation of strong edge effects on the pseudodiffusive transport of light in photonic graphene,” Phys. Rev. Lett. 104, 043903 (2010). [CrossRef]
  12. G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave propagation in graphene,” Appl. Phys. Lett. 95, 073107 (2009). [CrossRef]
  13. S. Bittner, B. Dietz, M. Miski-Oglu, P. Oria Iriarte, A. Richter, and F. Schäfer, “Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene,” Phys. Rev. B 82, 014301 (2010). [CrossRef]
  14. S. Y. Shi, C. H. Chen, and D. W. Prather, “Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers,” J. Opt. Soc. Am. A 21, 1769–1775 (2004). [CrossRef]
  15. M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-dimensional systems: The triangular lattice,” Opt. Commun. 80, 199–204 (1991). [CrossRef]
  16. R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Photonic band structure of accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434 (1993). [CrossRef]
  17. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  18. W. M. Robertson and G. Arjavalingam, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett. 68, 2023–2026 (1992). [CrossRef]
  19. V. Radisic, Y. X. Qian, R. Coccioli, and T. Itoh, “Novel 2-D photonic bandgap structure for microstrip lines,” IEEE Microwave Guided Wave Lett. 8, 69–71 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited