OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 625–629

Plasmon hybridization in coated metallic nanowires

Afshin Moradi  »View Author Affiliations


JOSA B, Vol. 29, Issue 4, pp. 625-629 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000625


View Full Text Article

Enhanced HTML    Acrobat PDF (799 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We apply the plasmon hybridization (PH) method to a general metallic nanowire/double-shell structure, providing a simple and intuitive description of the plasmon excitations of the system. In special cases, we find explicit forms of surface plasmon oscillations, in terms of interaction between the bare plasmon modes of the individual surfaces of the coated metallic core. In particular, we show that when the longitudinal wave vector is zero (q=0), the PH of core/double-nanotubes has a behavior similar to coated metallic nanospheres. We present numerical results displaying how the plasmon excitations of the system depend on the dielectric difference between the metallic core and metallic shell.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 24, 2011
Revised Manuscript: December 2, 2011
Manuscript Accepted: December 8, 2011
Published: March 16, 2012

Citation
Afshin Moradi, "Plasmon hybridization in coated metallic nanowires," J. Opt. Soc. Am. B 29, 625-629 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-4-625


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. I. Villo-Perez, Z. L. Miskovic, and N. R. Arista, “Plasmon spectra of nano-structures: a hydrodynamic model,” in A. Aldea and V. Barsan, eds., Trends in Nanophysics (Springer, 2010), pp. 217–254.
  4. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003). [CrossRef]
  5. E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys 120, 5444–5454 (2004). [CrossRef]
  6. A. Moradi, “Plasmon hybridization in metallic nanotubes,” J. Phys. Chem. Sol. 69, 2936–2938 (2008). [CrossRef]
  7. A. Moradi, “Plasmon hybridization in metallic nanotubes with a nonconcentric core,” Opt. Commun. 282, 3368–3370 (2009). [CrossRef]
  8. A. Moradi, “Plasmon hybridization in parallel nano-wire systems,” Phys. Plasmas 18, 064508 (2011). [CrossRef]
  9. M. D. Turner, Md. M. Hossain, and M. Gu, “The effects of retardation on plasmon hybridization within metallic nanostructures,” New J. Phys. 12, 083062 (2010). [CrossRef]
  10. R. M. Abraham Ekeroth, M. Lester, L. B. Scaffardi, and D. C. Schinca, “Metallic nanotubes characterization via surface plasmon excitation,” Plasmonics 6, 435–444 (2011). [CrossRef]
  11. F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127, 204703 (2007). [CrossRef]
  12. A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B 71, 115425 (2005). [CrossRef]
  13. K. Bao, H. Sobhani, and P. Nordlander, “Plasmon hybridization for real metals,” Chin. Sci. Bull. 55, 2629–2634 (2010). [CrossRef]
  14. Y. Zhang, G. T. Fei, and L. D. Zhang, “Plasmon hybridization in coated metallic nanosphere,” J. Appl. Phys. 109, 054315 (2011). [CrossRef]
  15. H. Xu, H. Li, Zh. Liu, S. Xie, X. Zhou, X. Peng, and X. Xu, “Effects of symmetry breaking on plasmon resonance in a noncoaxial nanotube and nanotube dimer,” J. Opt. Soc. Am. A 28, 1662–1667 (2011). [CrossRef]
  16. H. Xu, H. Li, Zh. Liu, S. Xie, X. Zhou, and J. Wu, “Adjustable plasmon resonance in the coaxial gold nanotubes,” Solid State Commun. 151, 759–762 (2011). [CrossRef]
  17. D. J. Mowbray, Z. L. Miskovic, F. O. Goodman, and Y.-N. Wang, “Interactions of fast ions with carbon nanotubes: two-fluid model,” Phys. Rev. B 70, 195418 (2004). [CrossRef]
  18. D. J. Mowbray, Z. L. Miskovic, and F. O. Goodman, “Ion interactions with carbon nanotubes in dielectric media,” Phys. Rev. B 74, 195435 (2006). [CrossRef]
  19. S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited