OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 630–634

Entanglement concentration of partially entangled three-photon W states with weak cross-Kerr nonlinearity

Li-Li Sun, Hong-Fu Wang, Shou Zhang, and Kyu-Hwang Yeon  »View Author Affiliations


JOSA B, Vol. 29, Issue 4, pp. 630-634 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000630


View Full Text Article

Enhanced HTML    Acrobat PDF (209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present two schemes to concentrate unknown partially entangled three-photon W states with weak cross-Kerr nonlinearity. In both schemes, the three distant parities can obtain a maximally entangled W state via local operations and classical communication with a higher success probability that is double that in Xiong and Ye’s scheme [J. Opt. Soc. Am. B 28, 2030 (2011)]. The entanglement concentration schemes need only one party’s local operations. Our schemes are relatively simple because fewer linear optics elements are used. In addition, our schemes do not need to use sophisticated single-photon detectors, which makes the scheme more feasible with present techniques.

© 2012 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: December 13, 2011
Manuscript Accepted: December 30, 2011
Published: March 16, 2012

Citation
Li-Li Sun, Hong-Fu Wang, Shou Zhang, and Kyu-Hwang Yeon, "Entanglement concentration of partially entangled three-photon W states with weak cross-Kerr nonlinearity," J. Opt. Soc. Am. B 29, 630-634 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-4-630


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  2. J. Joo, Y. J. Park, S. Oh, and J. Kim, “Quantum teleportation via a W state,” New J. Phys. 5, 136 (2003). [CrossRef]
  3. Z. L. Cao and M. Yang, “Probabilistic teleportation of unknown atomic state using W class states,” Physica A 337, 132–140 (2004). [CrossRef]
  4. P. Agrawal and A. Pati, “Perfect teleportation and superdense coding with W states,” Phys. Rev. A 74, 062320 (2006). [CrossRef]
  5. S. Muralidharan and P. K. Panigrahi, “Quantum-information splitting using multipartite cluster states,” Phys. Rev. A 78, 062333 (2008). [CrossRef]
  6. M. Murao and V. Vedral, “Remote information concentration using a bound entangled state,” Phys. Rev. Lett. 86, 352–355 (2001). [CrossRef]
  7. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996). [CrossRef]
  8. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef]
  9. T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001). [CrossRef]
  10. Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001). [CrossRef]
  11. Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003). [CrossRef]
  12. M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A 71, 044302 (2005). [CrossRef]
  13. M. Yang, W. Song, and Z. L. Cao, “Entanglement purification for arbitrary unknown ionic states via linear optics,” Phys. Rev. A 71, 012308 (2005).
  14. M. Yang and Z. L. Cao, “Entanglement distillation for W class states,” Physica A 337, 141–148 (2004). [CrossRef]
  15. C. D. Ogden, M. Paternostro, and M. S. Kim, “Concentration and purification of entanglement for qubit systems with ancillary cavity fields,” Phys. Rev. A 75, 042325 (2007). [CrossRef]
  16. B. Fortescue and H. K. Lo, “Random bipartite entanglement from W and W-like states,” Phys. Rev. Lett. 98, 260501 (2007). [CrossRef]
  17. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization entanglement concentration for electrons with charge detection,” Phys. Lett. A 373, 1823–1825 (2009). [CrossRef]
  18. H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states,” J. Opt. Soc. Am. B 27, 2159–2164(2010). [CrossRef]
  19. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996). [CrossRef]
  20. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996). [CrossRef]
  21. A. Miyake and H. J. Briegel, “Distillation of multipartite entanglement by complementary stabilizer measurements,” Phys. Rev. Lett. 95, 220501 (2005). [CrossRef]
  22. W. Dür and H. J. Briegel, “Entanglement purification and quantum error correction,” Rep. Prog. Phys. 70, 1381–1424 (2007). [CrossRef]
  23. M. Czechlewski, A. Grudka, S. Ishizaka, and A. Wójcik, “Entanglement purification protocol for a mixture of a pure entangled state and a pure product state,” Phys. Rev. A 80, 014303 (2009). [CrossRef]
  24. E. Isasi and D. Mundarain, “Distillation of Bell states in open systems,” Phys. Rev. A 81, 044303 (2010). [CrossRef]
  25. X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010). [CrossRef]
  26. Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010). [CrossRef]
  27. Y. B. Sheng, F. G. Deng, and G. L. Long, “Multipartite electronic entanglement purification with charge detection,” Phys. Lett. A 375, 396–400 (2011). [CrossRef]
  28. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008). [CrossRef]
  29. Y. B. Sheng, F. G. Deng, B. K. Zhao, T. J. Wang, and H. Y. Zhou, “Multipartite entanglement purification with quantum nondemolition detectors,” Eur. Phys. J. D 55, 235–242 (2009). [CrossRef]
  30. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010). [CrossRef]
  31. F. G. Deng, “Efficient multipartite entanglement purification with the entanglement link from a subspace,” Phys. Rev. A 84, 052312 (2011). [CrossRef]
  32. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008).
  33. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication,” Quantum Inf. Comput. 10, 272–281 (2010).
  34. C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput. 11, 988–1002 (2011).
  35. N. Imoto, H. A. Haus, and Y. Yamamoto, “Quantum nondemolition measurement of the photon number via the optical Kerr effect,” Phys. Rev. A 32, 2287–2292 (1985). [CrossRef]
  36. P. Kok, H. Lee, and J. P. Dowling, “Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements,” Phys. Rev. A 66, 063814 (2002). [CrossRef]
  37. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
  38. M. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137 (2005). [CrossRef]
  39. J. H. Shapiro and M. Razavi, “Continuous-time cross-phase modulation and quantum computation,” New J. Phys. 9, 16 (2007). [CrossRef]
  40. Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).
  41. Q. Guo, J. Bai, L. Y. Cheng, X. Q. Shao, H. F. Wang, and S. Zhang, “Simplified optical quantum-information processing via weak cross-Kerr nonlinearities,” Phys. Rev. A 83, 054303 (2011).
  42. W. Xiong and L. Ye, “Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 28, 2030–2037 (2011). [CrossRef]
  43. C. Zhao, M. Zhu, and L. Ye, “Robust scheme for the preparation of polarization-photon cluster state with homodyne measurement via weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 28, 1740–1745 (2011). [CrossRef]
  44. W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005). [CrossRef]
  45. P. Kok, “Effects of self-phase-modulation on weak nonlinear optical quantum gates,” Phys. Rev. A 77, 013808 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited