OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 635–645

Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation

Christian Agger, Christian Petersen, Sune Dupont, Henrik Steffensen, Jens Kristian Lyngsø, Carsten L. Thomsen, Jan Thøgersen, Søren R. Keiding, and Ole Bang  »View Author Affiliations

JOSA B, Vol. 29, Issue 4, pp. 635-645 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1064 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a detailed comparison between modeling and experiments on supercontinuum (SC) generation in a commercial ZBLAN step-index fiber. Special emphasis is put on identifying accurate material parameters by incorporating measurements of the ZBLAN Raman gain, fiber dispersion, and loss. This identification of accurate parameters is of great importance to substantiate numerical simulations of SC generation in soft-glass fibers. Good agreement between measurement and simulation is obtained when pumping both in the normal and anomalous dispersion regimes.

© 2012 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Nonlinear Optics

Original Manuscript: September 30, 2011
Revised Manuscript: December 10, 2011
Manuscript Accepted: December 12, 2011
Published: March 16, 2012

Virtual Issues
March 15, 2012 Spotlight on Optics

Christian Agger, Christian Petersen, Sune Dupont, Henrik Steffensen, Jens Kristian Lyngsø, Carsten L. Thomsen, Jan Thøgersen, Søren R. Keiding, and Ole Bang, "Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation," J. Opt. Soc. Am. B 29, 635-645 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970). [CrossRef]
  2. E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, “Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 15, 4848–4856 (2007). [CrossRef]
  3. A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1145–1160 (2006). [CrossRef]
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  5. N. Savage, “Supercontinuum sources,” Nat. Photon. 3, 114–115 (2009). [CrossRef]
  6. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Mater. Res. 36, 467–495 (2006). [CrossRef]
  7. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Maze, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006). [CrossRef]
  8. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009). [CrossRef]
  9. L. Liu, G. Qin, Q. Tian, D. Zhao, and W. Qin, “Numerical investigation of mid-infrared supercontinuum generation up to 5 μm in single mode fluoride fiber,” Opt. Express 19, 10041–10048 (2011). [CrossRef]
  10. Z. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009). [CrossRef]
  11. W. Q. Zhang, S. A. V., and T. M. Monro, “A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation,” Opt. Express 17, 19311–19327 (2009). [CrossRef]
  12. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004). [CrossRef]
  13. R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers,” Opt. Lett. 36, 2351–2353 (2011). [CrossRef]
  14. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2Se3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011). [CrossRef]
  15. S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. e Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19, B653–B660 (2011). [CrossRef]
  16. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009). [CrossRef]
  17. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012). [CrossRef]
  18. C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550 nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006). [CrossRef]
  19. C. Xia, Z. Xu, M. Islam, F. Terry, M. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-ir supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434(2009). [CrossRef]
  20. D. Anderson, M. Lisak, B. Malomed, and M. Quiroga-Teixeiro, “Tunneling of an optical soliton through a fiber junction,” J. Opt. Soc. Am. B 11, 2380–2384 (1994). [CrossRef]
  21. C. Agger, S. T. Sørensen, C. L. Thomsen, S. R. Keiding, and O. Bang, “Nonlinear soliton matching between optical fibers,” Opt. Lett. 36, 2596–2598 (2011). [CrossRef]
  22. C. Petersen, S. Dupont, C. Agger, J. Thøgersen, O. Bang, and S. R. Keiding, “Stimulated Raman scattering in soft glass fluoride fibers,” J. Opt. Soc. Am. B 28, 2310–2313 (2011). [CrossRef]
  23. X. Yan, C. Kito, S. Miyoshi, M. Liao, T. Suzuki, and Y. Ohishi, “Raman transient response and enhanced soliton self-frequency shift in ZBLAN fiber,” J. Opt. Soc. Am. B 29, 238–243(2011). [CrossRef]
  24. D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97, 061106 (2010). [CrossRef]
  25. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010). [CrossRef]
  26. J. Lægsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007). [CrossRef]
  27. J. Hult, “A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25, 3770–3775 (2007). [CrossRef]
  28. A. M. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol. 27, 3984–3991 (2009). [CrossRef]
  29. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61–68 (2003). [CrossRef]
  30. K. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989). [CrossRef]
  31. M. Horita, FiberLabs, KDDI Laboratories Building, 2-1-15 Ohara, Fujimino-shi, Saitama 356-8502, Japan (private communication, 2011).
  32. S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum—group-acceleration matching,” Opt. Lett. 36, 816–818 (2011). [CrossRef]
  33. M. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005). [CrossRef]
  34. F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995). [CrossRef]
  35. J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14, 11608–11615 (2006). [CrossRef]
  36. S. R. Loehr and C. T. Moynihan, “Effect of H2O partial pressure on the rate of hydration of ZrF4─BaF2─LaF3─AlF3 glass,” Mater. Sci. Forum 32–33, 261–265 (1991). [CrossRef]
  37. D. Szebesta, S. Davey, J. Williams, and M. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fibre,” J. Non-Cryst. Solids 161, 18–22 (1993). [CrossRef]
  38. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  39. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989). [CrossRef]
  40. R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74, 5954–5961 (1981). [CrossRef]
  41. Y. Durteste, M. Monerie, and P. Lamouler, “Raman amplification in fluoride glass fibres,” Electron. Lett. 21, 723–724 (1985). [CrossRef]
  42. T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993). [CrossRef]
  43. A. Saïssy, J. Botineau, L. Macon, and G. Maze, “Diffusion Raman dans une fibre optique en verre fluoré,” J. Phys. Lett. 46, 289–294 (1985). [CrossRef]
  44. T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990). [CrossRef]
  45. A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2171–2182(2002). [CrossRef]
  46. C. Lin, V. Nguyen, and W. French, “Wideband near-i.r. continuum (0.7−2.1  μm) generated in low-loss optical fibres,” Electron. Lett. 14, 822–823 (1978). [CrossRef]
  47. P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987). [CrossRef]
  48. J. M. Stone and J. C. Knight, “Visibly ‘white’ light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited