OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 656–664

Balance of physical effects causing stationary operation of Fourier domain mode-locked lasers

Sebastian Todor, Benjamin Biedermann, Robert Huber, and Christian Jirauschek  »View Author Affiliations


JOSA B, Vol. 29, Issue 4, pp. 656-664 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000656


View Full Text Article

Enhanced HTML    Acrobat PDF (806 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed analysis of the optical field dynamics in a Fourier domain mode-locked (FDML) laser. We employ a numerical simulation based on the FDML evolution equation, describing the propagation of the optical light field. The temporal evolution of the instantaneous power spectrum at different points in the laser cavity is investigated. The results are carefully validated against experimental data, yielding good agreement. Deeper insight is gained into the role of the physical effects governing FDML dynamics, such as gain recovery and linewidth enhancement in the semiconductor optical amplifier, dispersion and self-phase modulation in the optical fiber, and the sweep filter action.

© 2012 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3600) Lasers and laser optics : Lasers, tunable
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 14, 2011
Revised Manuscript: November 30, 2011
Manuscript Accepted: November 30, 2011
Published: March 16, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Sebastian Todor, Benjamin Biedermann, Robert Huber, and Christian Jirauschek, "Balance of physical effects causing stationary operation of Fourier domain mode-locked lasers," J. Opt. Soc. Am. B 29, 656-664 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-4-656


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  2. S. Yun, G. Tearney, Johannes de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003). [CrossRef]
  3. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007). [CrossRef]
  4. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005). [CrossRef]
  5. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006). [CrossRef]
  6. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000  lines/s,” Opt. Lett. 31, 2975–2977 (2006). [CrossRef]
  7. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010). [CrossRef]
  8. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011). [CrossRef]
  9. D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, and S. O’Connor, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008). [CrossRef]
  10. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003). [CrossRef]
  11. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523–10538 (2005).
  12. E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31, 228–229 (1995). [CrossRef]
  13. D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express 19, 20930–20939 (2011). [CrossRef]
  14. V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schumann, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Investig. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008). [CrossRef]
  15. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007). [CrossRef]
  16. K. Hsu, P. Meemon, K. S. Lee, P. J. Delfyett, and J. P. Rolland, “Broadband Fourier-domain mode-locked lasers,” Photon. Sens. 1, 222–227 (2011).
  17. G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. Gu, and I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express 16, 14095–14105 (2008). [CrossRef]
  18. Y. Mao, C. Flueraru, S. Sherif, and S. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282, 88–92 (2009). [CrossRef]
  19. M. Y. Jeon, J. Zhang, and Z. P. Chen, “Characterization of Fourier domain mode-locked wavelength swept laser for optical coherence tomography imaging,” Opt. Express 16, 3727–3737 (2008). [CrossRef]
  20. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express 16, 2547–2554 (2008). [CrossRef]
  21. E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16, 16552–16560 (2008).
  22. Y. Wang, W. Liu, J. Fu, and D. Chen, “Quasi-distributed fiber Bragg grating sensor system based on a Fourier domain mode locking fiber laser,” Laser Phys. 19, 450–454 (2009). [CrossRef]
  23. D. Chen, C. Shu, and S. He, “Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser,” Opt. Lett. 33, 1395–1397 (2008). [CrossRef]
  24. L. Kirsten, J. Walther, P. Cimalla, M. Gaertner, S. Meissner, and E. Koch, “Optical coherence tomography for imaging of subpleural alveolar structure using a Fourier domain mode locked laser,” Proc. SPIE 8091, 809118 (2011). [CrossRef]
  25. B. C. Lee and M. Y. Jeon, “Remote fiber sensor based on cascaded Fourier domain mode-locked laser,” Opt. Commun. 284, 4607–4610 (2011). [CrossRef]
  26. B. C. Lee, E. J. Jung, C. S. Kim, and M. Y. Jeon, “Dynamic and static strain fiber Bragg grating sensor interrogation with a 1.3 mu m Fourier domain mode-locked wavelength-swept laser,” Meas. Sci. Technol. 21, 094008 (2010). [CrossRef]
  27. E. J. Lee and Y. P. Kim, “Swept source optical coherence tomography with external clocking using voltage controlled oscillator,” Opt. Eng. 50, 053205 (2011). [CrossRef]
  28. M. T. Tsai, H. L. Liu, F. Y. Chang, T. C. Chang, and C. H. Yang, “Three-dimensional and en-face optical coherence tomography based on a Fourier domain mode locking laser for dermatology study,” in First International Symposium on Bioengineering(Research Publishing Services, 2011), pp. 88–95.
  29. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14, 11575–11584 (2006). [CrossRef]
  30. C. M. Eigenwillig, B. R. Biedermann, W. Wieser, and R. Huber, “Wavelength swept amplified spontaneous emission source,” Opt. Express 17, 18794–18807 (2009). [CrossRef]
  31. C. M. Eigenwillig, T. Klein, W. Wieser, B. R. Biedermann, and R. Huber, “Wavelength swept amplified spontaneous emission source for high speed retinal optical coherence tomography at 1060 nm,” J. Biophotonics 4, 552–558 (2011). [CrossRef]
  32. T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15, 528–534 (2009). [CrossRef]
  33. V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-Mode 1310 nm MEMS-tunable VCSELs with >100  nm tuning rate,” in Quantum Electronics and Laser Science Conference (Optical Society of America, 2011).
  34. G. Overton, “760 kHz OCT scanning possible with MEMS-tunable VCSEL,” Laser Focus World 47, 15 (2011).
  35. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400  kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35, 2919–2921 (2010).
  36. C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express 17, 24013–24019 (2009). [CrossRef]
  37. S. Todor, B. Biedermann, W. Wieser, R. Huber, and C. Jirauschek, “Instantaneous lineshape analysis of Fourier domain mode-locked lasers,” Opt. Express 19, 8802–8807 (2011). [CrossRef]
  38. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Direct measurement of the instantaneous linewidth of rapidly wavelength-swept lasers,” Opt. Lett. 35, 3733–3735 (2010).
  39. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  40. C. H. Henry, “Theory of the linewidth of semiconductor-lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982). [CrossRef]
  41. A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications,” Opt. Lett. 31, 760–762 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited