OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 676–682

Laser cooling with PbSe colloidal quantum dots

Galina Nemova and Raman Kashyap  »View Author Affiliations


JOSA B, Vol. 29, Issue 4, pp. 676-682 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000676


View Full Text Article

Enhanced HTML    Acrobat PDF (483 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical scheme for laser cooling with colloidal lead-salt PbSe quantum dots (QDs) doped in a glass host. The laser cooling process is based on the anti-Stokes fluorescence in QDs. The relatively short (microsecond range) lifetime of the excited level of the PbSe QD allows the cooling process to be accelerated and new materials with higher phonon energy to be used as hosts, which are normally considered unsuitable for cooling with rare-earth ions. The considerable increase (by 104) in the absorption cross section of the PbSe QD in comparison with the absorption cross section of rare-earth ions doped in glasses or crystals increases the efficiency of the cooling process considerably, lowering the pump power requirements.

© 2012 Optical Society of America

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(140.6810) Lasers and laser optics : Thermal effects
(160.6000) Materials : Semiconductor materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 19, 2011
Revised Manuscript: November 29, 2011
Manuscript Accepted: December 6, 2011
Published: March 16, 2012

Citation
Galina Nemova and Raman Kashyap, "Laser cooling with PbSe colloidal quantum dots," J. Opt. Soc. Am. B 29, 676-682 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-4-676


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. O. Dantas, F. Qu, A. F. G. Monte, R. S. Silva, and P. C. Morais, “Optical properties of IV–VI quantum dots embedded in glass: size-effects,” J. Non-Cryst. Solids 352, 3525–3529 (2006). [CrossRef]
  2. P. Michler, ed., Single Semiconductor Quantum Dots (Springer-Verlag, 2009).
  3. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929). [CrossRef]
  4. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995). [CrossRef]
  5. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photon. 4, 161–164 (2010). [CrossRef]
  6. F. W. Wise, “Lead-salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33, 773–780 (2000). [CrossRef]
  7. J. P. Zheng and H. S. Kwok, “Temperature dependence of the optical properties of semiconductor microcrystals,” J. Opt. Soc. Am. B 9, 2047–2053 (1992). [CrossRef]
  8. T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmueller, and H. Weller, “CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift,” J. Phys. Chem. 98, 7665–7673 (1994). [CrossRef]
  9. S. Nomura and T. Kobayashi, “Exciton–LO-phonon couplings in spherical semiconductor microcrystallites,” Phys. Rev. B 45, 1305–1316 (1992). [CrossRef]
  10. A. Lipovskii, E. Kolobkova, V. Petrikov, I. Kang, A. Olkhovets, T. Krauss, M. Thomas, J. Silcox, F. Wise, Q. Shen, and S. Kycia, “Synthesis and characterization of PbSe quantum dots in phosphate glass,” Appl. Phys. Lett. 71, 3406–3408 (1997). [CrossRef]
  11. A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent temperature variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett. 81, 3539–3542 (1998). [CrossRef]
  12. C. Cheng and H. Zhang, “Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier,” Opt. Commun. 277, 372–378 (2007). [CrossRef]
  13. C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol. 26, 1404–1410 (2008). [CrossRef]
  14. A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun. 282, 4449–4454 (2009). [CrossRef]
  15. J. M. Harbold and F. W. Wise, “Photoluminescence spectroscopy of PbSe nanocrystals,” Phys. Rev. B 76, 125304 (2007). [CrossRef]
  16. M. I. Vasilevskiy, E. V. Anda, and S. S. Makler, “Electron-phonon interaction effects in semiconductor quantum dots: a nonperturabative approach,” Phys. Rev. B 70, 035318 (2004). [CrossRef]
  17. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science 287, 1011–1013 (2000). [CrossRef]
  18. H. Htoon, J. A. Hollingsworth, R. Dickerson, and V. I. Klimov, “Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods,” Phys. Rev. Lett. 91, 227401 (2003). [CrossRef]
  19. R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals,” J. Phys. Chem. B 107, 13765–13768 (2003). [CrossRef]
  20. P. T. Landsberg, Recombination in Semiconductors(Cambridge University, 1991).
  21. D. I. Chepic, A. L. Efros, A. I. Ekimov, M. G. Ivanov, V. A. Kharchenko, and I. A. Kudriavtsev, “Auger ionization of semiconductor quantum drops in a glass matrix,” J. Lumin. 47, 113–127 (1990). [CrossRef]
  22. V. I. Klimov, “Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion,” J. Phys. Chem. B 110, 16827–16845 (2006). [CrossRef]
  23. V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104, 6112–6123 (2000). [CrossRef]
  24. D. E. Gmez, J. van Embden, J. Jasieniak, T. A. Smith, and P. Mulvaney, “Blinking and surface chemistry of single CdSe nanocrystals,” Small 2, 204–208 (2006). [CrossRef]
  25. J. W. Stouwdam, J. Shan, F. C. J. M. van Veggel, A. G. Pattantyus-Abraham, J. F. Young, and M. Raudsepp, “Photostability of colloidal PbSe and PbSe/PbS core/shell nanocrystals in solution and in the solid state,” J. Phys. Chem. C 111, 1086–1092 (2007). [CrossRef]
  26. A. C. Bartnik, F. W. Wise, A. Kigel, and E. Lifshitz, “Electronic structure of PbSe/PbS core-shell quantum dots,” Phys. Rev. B 75, 245424 (2007). [CrossRef]
  27. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009). [CrossRef]
  28. B. L. Wehrenbeg, C. Wang, and P. Guyot-Sionnest, “Interband and intraband optical studies of PbSe colloidal quantum dots,” J. Phys. Chem. B 106, 10634–10640 (2002). [CrossRef]
  29. J. M. Harbold, H. Du, T. D. Krauss, K.-S. Cho, C. B. Murray, and F. W. Wise, “Time-resolved intraband relaxation of strongly confined electrons and holes in colloidal PbSe nanocrystals,” Phys. Rev. B 72, 195312 (2005). [CrossRef]
  30. G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83, 013404 (2011). [CrossRef]
  31. S. Bigotta and M. Tonelli, “Laser cooling in fluoride crystals,” in Optical Refrigeration, R. I. Epstein and M. Sheik-Bahae, eds. (Wiley-VCH, 2009), pp. 75–95.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited