OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 691–697

Analysis of light wave diffraction and amplification by reflection grating operating in the second-order Bragg regime. 1. Approximate theory

Volodymyr M. Fitio and Tatiana N. Smirnova  »View Author Affiliations

JOSA B, Vol. 29, Issue 4, pp. 691-697 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (303 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new approximate theory was developed and applied to analysis of the second-order Bragg diffraction by a thick reflection grating formed in a medium with and without optical gain. To derive the general system of equations describing the optical wave interaction with a grating, the method of variation of constants was used, which allowed us to obtain the analytical formulas for the electric-field strength of transmitted and reflected waves. The proposed approach was extended to the case of grating formed in a material with nonlinear response to the recording field when dielectric permittivity modulation of a medium includes higher spatial harmonics.

© 2012 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(050.7330) Diffraction and gratings : Volume gratings
(140.3490) Lasers and laser optics : Lasers, distributed-feedback

ToC Category:
Diffraction and Gratings

Original Manuscript: September 22, 2011
Revised Manuscript: January 12, 2012
Manuscript Accepted: January 23, 2012
Published: March 20, 2012

Volodymyr M. Fitio and Tatiana N. Smirnova, "Analysis of light wave diffraction and amplification by reflection grating operating in the second-order Bragg regime. 1. Approximate theory," J. Opt. Soc. Am. B 29, 691-697 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kogelnik and C. V. Shank, “Stimulated emission in periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971). [CrossRef]
  2. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972). [CrossRef]
  3. J. E. Bjorkholm and C. V. Shank, “Higher-order distributed feedback oscillators,” Appl. Phys. Lett. 20, 306–308 (1972). [CrossRef]
  4. S. Wang, “Principles of distributed feedback and distributed Bragg reflector lasers,” IEEE J. Quantum Electron. 10, 413–427(1974). [CrossRef]
  5. A. Yariv and R. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).
  6. A. Saliminia, A. Villeneuve, T. V. Galstian, S. LaRoshelle, and K. Richardson, “First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17, 837–842 (1999). [CrossRef]
  7. G. A. Turnbul, P. Andrew, M. J. Jori, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64, 125122 (2001). [CrossRef]
  8. T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14, 4178–4185 (2002). [CrossRef]
  9. M. Maeda, Y. Oki, and K. Imamura, “Ultrashort pulse generation from an integrated single-chip dye laser,” IEEE J. Quantum Electron. 33, 2146–2149 (1997). [CrossRef]
  10. T. Voss, D. Scheel, and W. Schade, “A microchip-laser-pumped DFB-polymer-dye laser,” Appl. Phys. B 73, 105–109 (2001). [CrossRef]
  11. Y. Oki, S. Miyamoto, M. Maeda, and N. J. Vasa, “Multiwavelength distributed-feedback dye laser array and its application to spectroscopy,” Opt. Lett. 27, 1220–1222 (2002). [CrossRef]
  12. T.S. Efendiev, V. M. Katarkevich, A. N. Rubinov, and V. A. Zaporozhchenko, “A compact picosecond DFB laser on dye-doped jelly-like gelatin,” in Collected articles “Laser and opto-electronic engineering” (Minsk, 2002), pp. 26–30.
  13. F. Scotognella, D. P. Puzzo, A. Monguzzi, D. S. Wiersma, D. Maschke, R. Tubino, and G. A. Ozin, “Nanoparticle one-dimensional photonic-crystal dye laser,” Small 5, 2048–2052 (2009). [CrossRef]
  14. T. N. Smirnova, O. V. Sakhno, J. Stumpe, V. Kzianzou, and S. Schrader, “Distributed feedback lasing in dye-doped nanocomposite holographic transmission gratings,” J. Opt. 13, 035709 (2011). [CrossRef]
  15. S. Balslev and A. Kristensen, “Microfluidic single mode laser using high order Bragg grating and antiguiding segments,” Opt. Express 13, 344–351 (2005). [CrossRef]
  16. M. Gersborg-Hansen and A. Kriensen, “Optofluidic third order distributed feedback dye laser,” Appl. Phys. Lett. 89, 103518 (2006). [CrossRef]
  17. Z. Zylberberg and E. Marom, “Rigorous coupled-wave analysis of pure reflection grating,” J. Opt. Soc. Am. 73, 392–398 (1983). [CrossRef]
  18. M. G. Moharam and T. K. Gaylord, “Comments on analyses of reflection grating,” J. Opt. Soc. Am. 73, 399–401 (1983). [CrossRef]
  19. M. G. Moharam and T. K. Gaylord, “Chain-matrix analysis of arbitrary-thickness dielectric reflection gratings,” J. Opt. Soc. Am. 72, 187–190 (1982). [CrossRef]
  20. V. M. Fitio and Y. V. Bobitski, “Diffraction on TE and TM polarization optical waves in non-absorptive medium with periodical variation of the dielectric constant,” Ukr. Phys. J. 48, 1046–1054 (2003).
  21. M. V. Vasnetsov, V.Yu. Bazhenov, S. S. Slussarenko, and G. Abbate, “Coupled-wave analysis of second-order Bragg diffraction. I. Reflection-type phase gratings,” J. Opt. Soc. Am. B 26, 684–690 (2009). [CrossRef]
  22. V. M. Fitio, O. V Sakhno, and T. N. Smirnova, “Analysis of the diffraction by the gratings generated in the materials with a nonlinear response,” Optik 119, 236–246 (2008). [CrossRef]
  23. V. M. Fitio and T. N. Smirnova, “Analysis of light wave diffraction and amplification by reflection grating operating in the second-order Bragg regime. II. Reflectivity and spectral characteristics of a grating,”J. Opt. Soc. Am. B, under revision.
  24. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Mechanics (Pergamon, 1960).
  25. P. A. M. Dirac, The Principles of Quantum Mechanics(Clarendon, 1958).
  26. L. S. Pontryagin, Normal Differential Equations (Nauka, 1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited