OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 714–718

Rotational Doppler shift of a phase-conjugated photon

A. Yu. Okulov  »View Author Affiliations


JOSA B, Vol. 29, Issue 4, pp. 714-718 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000714


View Full Text Article

Enhanced HTML    Acrobat PDF (355 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The rotational Doppler shift of a photon with orbital angular momentum ± is shown to be an even multiple of the angular frequency Ω of the reference frame rotation when the photon is reflected from the phase-conjugating mirror. The one-arm phase-conjugating interferometer is considered. It contains N Dove prisms or other angular-momentum-altering elements rotating in opposite directions. When such interferometer is placed in the rotating vehicle, the δω=4(N+1/2)·Ω rotational Doppler shift appears. As a result, the helical interference pattern will rotate with angular frequency δω/2. The accumulation of angular Doppler shift via successive passages through the N image-inverting prisms is due to the phase conjugation; for a conventional parabolic retroreflector, the accumulation is absent. The features of such a vortex phase-conjugating interferometry at the single-photon level are discussed.

© 2012 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(030.6140) Coherence and statistical optics : Speckle
(070.5040) Fourier optics and signal processing : Phase conjugation
(140.3560) Lasers and laser optics : Lasers, ring
(160.1585) Materials : Chiral media
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 27, 2011
Revised Manuscript: December 12, 2011
Manuscript Accepted: December 29, 2011
Published: March 20, 2012

Citation
A. Yu. Okulov, "Rotational Doppler shift of a phase-conjugated photon," J. Opt. Soc. Am. B 29, 714-718 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-4-714


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), Chap. 4.
  2. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002). [CrossRef]
  3. A. Bekshaev, M. Soskin, and M. Vasnetsov, Paraxial Light Beams with Angular Momentum (Nova Science, 2008).
  4. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  5. B. Y. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).
  6. N. G. Basov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, and A. Y. Okulov, “Laser interferometer with wavefront reversing mirrors,” J. Exp. Theor. Phys. 52, 847–851 (1980).
  7. M. Woerdemann, C. Alpmann, and C. Denz, “Self-pumped phase conjugation of light beams carrying orbital angular momentum,” Opt. Express 17, 22791 (2009). [CrossRef]
  8. A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Time dependent evolution of an optical vortex in photorefractive media,” Phys. Rev. A 56, R1713 (1997). [CrossRef]
  9. A. Yu Okulov, “Angular momentum of photons and phase conjugation,” J. Phys. B 41, 101001 (2008). [CrossRef]
  10. B. A. Garetz, “Angular Doppler effect,” J. Opt. Soc. Am. 71, 609–611 (1981). [CrossRef]
  11. G. Nienhuis, “Doppler effect induced by rotating lenses,” Opt. Commun. 132, 8–14 (1996). [CrossRef]
  12. I. Bialynicki-Birula and Z. Bialynicka-Birula, “Rotational frequency shift,” Phys. Rev. Lett. 78, 2539–2542 (1997). [CrossRef]
  13. J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1998). [CrossRef]
  14. J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998). [CrossRef]
  15. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  16. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936). [CrossRef]
  17. J. E. Sipe, “Photon wave functions,” Phys. Rev. A 52, 1875–1883 (1995). [CrossRef]
  18. M. Baier, S. Watanabe, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, “Single-photon emission from site-controlled pyramidal quantum dots,” Appl. Phys. Lett. 84, 648–650 (2004). [CrossRef]
  19. K. Volke-Sepulveda and R. Jauregui, “All-optical 3D atomic loops generated with Bessel light fields,” J. Phys. B 42, 085303 (2009). [CrossRef]
  20. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499 (1987). [CrossRef]
  21. M. P. MacDonald, K. Volke-Sepulveda, L. Paterson, J. Arlt, W. Sibbett, and K. Dholakia, “Revolving interference patterns for the rotation of optically trapped particles,” Opt. Commun. 201, 21–28 (2002). [CrossRef]
  22. J. Arlt, M. MacDonald, L. Paterson, W. Sibbett, K. Volke-Sepulveda, and K. Dholakia, “Moving interference patterns created using the angular Doppler-effect,” Opt. Express 10, 844–852 (2002).
  23. E. Abramochkin and V. Volostnikov, “Spiral light beams,” Phys. Usp. 47, 1177–1203 (2004). [CrossRef]
  24. Ch. V. Felde and P. V. Polyanski, “Static holographic phase conjugation of vortex beams,” Opt. Spectrosc. 98, 913–918 (2005). [CrossRef]
  25. A. Yu. Okulov, “Twisted speckle entities inside wavefront reversal mirrors,” Phys. Rev. A 80, 163907 (2009). [CrossRef]
  26. M. Bhattacharya, “Lattice with a twist: helical waveguides for ultracold matter,” Opt. Commun. 279, 219–222 (2007). [CrossRef]
  27. A. Yu. Okulov, “Phase-conjugation of the isolated optical vortex using a flat surfaces,” J. Opt. Soc. Am. B 27, 2424–2427 (2010). [CrossRef]
  28. H. Q. Wei, X. Xue, J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, E. Yao, and J. Courtial, “Simplified measurement of the orbital angular momentum of single photons,” Opt. Commun. 223, 117–122 (2003). [CrossRef]
  29. M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial1, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011). [CrossRef]
  30. D. M. Pepper, “Phase conjugate optics,” Ph.D. dissertation (California Institute of Technology, 1980), p. 37. http://resolver.caltech.edu/CaltechETD-10122006-081036 .
  31. A. V. Nowak, T. R. Moore, and R. A. Fisher, “Observations of internal beam production in barium titanate phase conjugators,” J. Opt. Soc. Am. B 5, 1864–1878 (1988). [CrossRef]
  32. S. Sternklar, S. Weiss, and B. Fischer, “Tunable frequency shift of photorefractive oscillators,” Opt. Lett. 11, 165–167 (1986). [CrossRef]
  33. E. M. Lifshitz, L. P. Pitaevskii, and V. B. Berestetskii, Quantum Electrodynamics (Butterworth, 1982), Sections 6 and 8.
  34. P. N. Lebedev, “Experimental examination of the light pressure,” Ann. Phys. 6, 433–459 (1901). [CrossRef]
  35. T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. W. H. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007). [CrossRef]
  36. S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow-light medium,” Science 333, 65–67 (2011). [CrossRef]
  37. L. Foucault, “Démonstration physique du mouvent de rotation de la Terre, au moyen d’un pendule,” C. R. Hebd. Seances Acad. Sci., 35, 135–138 (1851).
  38. M. Shirasaki, H. A. Haus, and D. L. Wong, “Quantum theory of the nonlinear interferometer,” J. Opt. Soc. Am. B 6, 82–88 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited