OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 738–747

Characteristics of defect modes in side-coupled and mutually coupled microresonator arrays

Landobasa Y. M. Tobing, Liliana Tjahjana, and Dao Hua Zhang  »View Author Affiliations

JOSA B, Vol. 29, Issue 4, pp. 738-747 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1013 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present both theoretically and experimentally the existence of defect modes in side-coupled and mutually coupled microresonator arrays. The qualitative difference between the two types of defect modes is investigated. The Q factor of both defect modes for varying defect sizes is characterized, and an enhancement of 30 × relative to individual loaded resonators is demonstrated. The defect modes are then compared with coupled resonator–induced transparency (CRIT), indicating that the defect modes based on side-coupled microresonator arrays are actually the extension of the CRIT resonance in two-resonator structures.

© 2012 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.4555) Optical devices : Coupled resonators

ToC Category:
Integrated Optics

Original Manuscript: November 22, 2011
Revised Manuscript: January 24, 2012
Manuscript Accepted: January 24, 2012
Published: March 21, 2012

Landobasa Y. M. Tobing, Liliana Tjahjana, and Dao Hua Zhang, "Characteristics of defect modes in side-coupled and mutually coupled microresonator arrays," J. Opt. Soc. Am. B 29, 738-747 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005). [CrossRef]
  2. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997). [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  4. M. F. Yanik and S. Fan, “Stopping and storing light coherently,” Phys. Rev. A 71, 013803 (2005). [CrossRef]
  5. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006). [CrossRef]
  6. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902(2009). [CrossRef]
  7. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004). [CrossRef]
  8. N. G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005). [CrossRef]
  9. L. B. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonator,” Opt. Lett. 29, 626–628 (2004). [CrossRef]
  10. L. Y. Mario, D. C. S. Lim, and M. K. Chin, “Proposal of an ultra-narrow passband using two-coupled rings,” IEEE Photon. Technol. Lett. 19, 1688–1690 (2007). [CrossRef]
  11. L. Y. M. Tobing, P. Dumon, R. Baets, D. C. S. Lim, and M. K. Chin, “Finesse enhancement in silicon-on-insulator two-ring resonator system,” Appl. Phys. Lett. 92, 101122 (2008). [CrossRef]
  12. B. Maes, P. Bienstman, and R. Baets, “Switching in coupled nonlinear photonic crystal resonators,” J. Opt. Soc. Am. B 22 (8), 1778–1784 (2005). [CrossRef]
  13. Y. Lu, J. Yao, X. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in microcavity-resonator Mach Zehnder interferometer,” Opt. Lett. 30, 3069–3071 (2005). [CrossRef]
  14. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, “Distributed and localized feedback in microresonator sequence for linear and nonlinear optics,” J. Opt. Soc. Am. B 21, 1818–1832 (2004). [CrossRef]
  15. Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E 68, 066616 (2003). [CrossRef]
  16. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]
  17. Y. M. Landobasa, S. Darmawan, and M. K. Chin, “Matrix analysis of 2-D micro-resonator lattice optical filters,” IEEE J. Quantum Electron. 41, 1410–1418 (2005). [CrossRef]
  18. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature 1, 65–71 (2007). [CrossRef]
  19. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical delay lines,” J. Opt. Soc. B 21, 1665–1673 (2004). [CrossRef]
  20. L. Y. M. Tobing, P. Dumon, R. Baets, and M. K. Chin, “Boxlike filter response based on complementary photonic bandgap in two-dimensional microresonator arrays,” Opt. Lett. 33, 2512–2514 (2008). [CrossRef]
  21. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm,” J. Lightwave Technol. 26, 228–236 (2008). [CrossRef]
  22. T. Barwicz, M. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” J. Lightwave Technol. 24, 2207–2218 (2006). [CrossRef]
  23. F. Xia, M. Rooks, L. Sekaric, and Y. Vlassov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15, 11934–11941 (2007). [CrossRef]
  24. J. R. Ong, M. L. Cooper, G. Gupta, W. M. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Intra- and inter-band four-wave mixing in silicon coupled resonator optical waveguides,” in CLEO:2011–Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuW1.
  25. I. Chremmos and O. Schwelb, “Diatomic coupled-resonator optical waveguide,” J. Opt. Soc. B 27, 1242–1251 (2010). [CrossRef]
  26. O. Schwelb and I. Frigyes, “All-optical tunable filters built with discontinuity-assisted ring resonators,” J. Lightwave Technol. 19, 380–386 (2001). [CrossRef]
  27. X. Tu, L. Y. Mario, and T. Mei, “Coupled Fano resonator,” Opt. Express 18, 18820–18831 (2010). [CrossRef]
  28. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  29. Y. M. Landobasa and M. K. Chin, “Defect modes in micro-ring resonator arrays,” Opt. Express 13, 7800–7815 (2005). [CrossRef]
  30. O. Schwelb and I. Chremmos, “Defect assisted coupled resonator optical waveguide: weak perturbations,” Opt. Commun. 283, 3686–3690 (2010). [CrossRef]
  31. L. Y. M. Tobing, P. Dumon, R. Baets, and M. K. Chin, “Demonstration of defect modes in coupled microresonator arrays fabricated in silicon-on-insulator technology,” Opt. Lett. 33, 1939–1941 (2008). [CrossRef]
  32. www.epixfab.eu .
  33. L. Y. Mario, D. C. S. Lim, P. Dumon, R. Baets, and M.-K. Chin, “Experimental verification of finesse enhancement scheme in two-ring resonator system,” Proc. SPIE 6996, 69960B (2008).
  34. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002). [CrossRef]
  35. F. Xia, L. Sekaric, and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express 14, 3872–3886 (2006). [CrossRef]
  36. V. Van, P. P. Absil, J. V. Hryniewicz, and P.-T. Ho, “Propagation loss in single-mode GaAs-AlGaAs microring resonators: measurement and model,” J. Lightwave Technol. 19, 1734–1739 (2001). [CrossRef]
  37. M. Mancinelli, R. Guider, M. Masi, P. Bettotti, M. R. Vanacharla, J.-M. Fedelli, and L. Pavesi, “Optical characterization of a SCISSOR device,” Opt. Express 19, 13664–13674 (2011). [CrossRef]
  38. P. Yeh, Optical Waves in Layered Media (Wiley, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited