OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 753–757

Limits to dispersion compensation in a linear Brillouin slow-light system employing SBS slow- and fast-light propagation in cascaded optical fibers

Zhiyao Zhang, Xiaojun Zhou, Lan Lan, and Yong Liu  »View Author Affiliations


JOSA B, Vol. 29, Issue 4, pp. 753-757 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000753


View Full Text Article

Enhanced HTML    Acrobat PDF (273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical model for quantifying the pulse distortion introduced by the stimulated-Brillouin-scattering (SBS)-induced (equivalent) dispersion in a linear Brillouin slow-light system is presented. Based on this model, a linear Brillouin slow-light system employing fast-light propagation for dispersion compensation is analyzed. The results show that the elimination of gain-nonuniformity-induced equivalent group-velocity dispersion can be achieved with the sacrifice of introducing much larger high-order (equivalent) dispersion effects. It is also shown that the simultaneous cancellation of gain-nonuniformity-induced equivalent group-velocity dispersion and third-order dispersion as presented in a recent article is impossible.

© 2012 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(230.1150) Optical devices : All-optical devices
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Scattering

History
Original Manuscript: October 20, 2011
Revised Manuscript: December 6, 2011
Manuscript Accepted: January 5, 2012
Published: March 21, 2012

Citation
Zhiyao Zhang, Xiaojun Zhou, Lan Lan, and Yong Liu, "Limits to dispersion compensation in a linear Brillouin slow-light system employing SBS slow- and fast-light propagation in cascaded optical fibers," J. Opt. Soc. Am. B 29, 753-757 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-4-753


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008). [CrossRef]
  2. N. Matsuda, T. Kato, K. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, “Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide,” Opt. Express 19, 19861–19874 (2011). [CrossRef]
  3. A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19, 462–464 (2007). [CrossRef]
  4. J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications. (CRC, 2009).
  5. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005). [CrossRef]
  6. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005). [CrossRef]
  7. A. Zadok, A. Eyal, and M. Yur, “Stimulated Brillouin scattering slow light in optical fibers,” Appl. Opt. 50, E38–E49 (2011). [CrossRef]
  8. M. G. Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006). [CrossRef]
  9. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764–2777 (2008). [CrossRef]
  10. M. D. Stenner, M. A. Neifeld, Z. M. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005). [CrossRef]
  11. T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, “Distortion reduction in cascaded slow light delays,” Electron. Lett. 42, 1110–1111 (2006). [CrossRef]
  12. A. Minardo, R. Bernini, and Luigi Zeni, “Low distortion Brillouin slow light in optical fibers using AM modulation,” Opt. Express 14, 5866–5876 (2006). [CrossRef]
  13. T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, “Distortion reduction in slow light systems based on stimulated Brillouin scattering,” Opt. Express 16, 8280–8285 (2008). [CrossRef]
  14. T. Sakamoto, T. Yamamoto, K. Shiraki, and T. Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032 (2008). [CrossRef]
  15. L. Y. Ren and Y. Tomita, “Reducing group-velocity-dispersion-dependent broadening of stimulated Brillouin scattering slow light in an optical fiber by use of a single pump laser,” J. Opt. Soc. Am. B 25, 741–746 (2008). [CrossRef]
  16. T. Schneider, A. Wiatreck, and R. Henker, “Zero-broadening and pulse compression slow light in an optical fiber at high pulse delays,” Opt. Express 16, 15617–15622 (2008). [CrossRef]
  17. S. H. Wang, L. Y. Ren, Y. Liu, and Y. Tomita, “Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams,” Opt. Express 16, 8067–8076 (2008). [CrossRef]
  18. A. Wiatrek, R. Henker, S. Preußler, and T. Schneider, “Pulse broadening cancellation in cascaded slow-light delays,” Opt. Express 17, 7586–7591 (2009). [CrossRef]
  19. A. Wiatrek, R. Henker, S. Preußler, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, “Zero-broadening measurement in Brillouin based slow-light delays,” Opt. Express 17, 797–802 (2009). [CrossRef]
  20. A. Wiatrek, K. Jamshidi, R. Henker, S. Preußler, and T. Schneider, “Nonlinear Brillouin based slow-light system for almost distortion-free pulse delay,” J. Opt. Soc. Am. B 27, 544–549 (2010). [CrossRef]
  21. S. Chin, M. G. Herraez, and L. Thévenaz, “Complete compensation of pulse broadening in an amplifier-based slow light system using a nonlinear regeneration element,” Opt. Express 17, 21910–21917 (2009). [CrossRef]
  22. Y. Wu, L. Zhan, Y. Wang, S. Luo, and Y. Xia, “Low distortion pulse delay using SBS slow- and fast-light propagation in cascaded optical fibers,” J. Opt. Soc. Am. B 28, 2605–2610 (2011). [CrossRef]
  23. G. P. Agrawal, Nonlinear Fiber Optics4th ed. (Academic Press, 2007).
  24. Z. M. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007). [CrossRef]
  25. K. Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32, 217–219 (2007). [CrossRef]
  26. L. L. Yi, Y. Jaouën, W. S. Hu, Y. K. Su, and S. Bigo, “Improved slow-light performance of 10  Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS,” Opt. Express 15, 16972–16979 (2007). [CrossRef]
  27. B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007). [CrossRef]
  28. B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, and A. E. Willner, “Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line,” Opt. Express 15, 8317–8322 (2007). [CrossRef]
  29. Z. M. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP1.
  30. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1974, Chapter 7).
  31. Z. Y. Zhang, X. J. Zhou, R. Liang, and S. H. Shi, “Influence of third-order dispersion on delay performance in broadband Brillouin slow light,” J. Opt. Soc. Am. B 26, 2211–2217 (2009). [CrossRef]
  32. M. G. Herraez and L. Thévenaz, “Physical limits to broadening compensation in a linear slow light system,” Opt. Express 17, 4732–4739 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited