OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 786–792

Cryogenic Faraday isolator with a disk-shaped magneto-optical element

Dmitry S. Zheleznov, Aleksey V. Starobor, Oleg V. Palashov, and Efim A. Khazanov  »View Author Affiliations


JOSA B, Vol. 29, Issue 4, pp. 786-792 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000786


View Full Text Article

Enhanced HTML    Acrobat PDF (490 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A cryogenic Faraday isolator with disc-shaped magneto-optical element is described. Depolarization of laser radiation caused by transverse inhomogeneity of Verdet constant has been measured for the first time. The decrease of the thermally induced effects caused by heat removal from the face-end of the magneto-optical element of terbium gallium garnet with sapphire and aluminum-yttrium garnet discs is investigated. Characteristics of the cryogenic Faraday isolator at high laser power above 1 kW have been investigated experimentally and the possibility of its use at power as high as 6 kW is demonstrated. The reduction of thermo-optical constants Q and P by a factor of 5.7 and 6.8, respectively, with cooling from 300 K to 80 K has been measured for TGG crystal.

© 2012 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(160.3820) Materials : Magneto-optical materials
(230.2240) Optical devices : Faraday effect
(230.3240) Optical devices : Isolators
(230.3810) Optical devices : Magneto-optic systems

ToC Category:
Optical Devices

History
Original Manuscript: September 30, 2011
Revised Manuscript: December 14, 2011
Manuscript Accepted: December 14, 2011
Published: March 26, 2012

Citation
Dmitry S. Zheleznov, Aleksey V. Starobor, Oleg V. Palashov, and Efim A. Khazanov, "Cryogenic Faraday isolator with a disk-shaped magneto-optical element," J. Opt. Soc. Am. B 29, 786-792 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-4-786


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. http://www.st.northropgrumman.com , “Northrop Grumman.”
  2. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor,” Appl. Opt. 40, 366–374 (2001). [CrossRef]
  3. VIRGO-Collaboration, “In-vacuum optical isolation changes by heating in a Faraday isolator,” Appl. Opt. 47, 5853–5861 (2008).
  4. C. F. Padula and C. G. Young, “Optical isolators for high-power 1.06-micron glass laser systems,” IEEE J. Quantum Electron. 3, 493–498 (1967). [CrossRef]
  5. N. P. Barnes, and L. P. Petway, “Variation of the Verdet constant with temperature of TGG,” J. Opt. Soc. Am. B. 9, 1912–1915 (1992). [CrossRef]
  6. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999). [CrossRef]
  7. A. N. Malshakov, G. Pasmanik, and A. K. Poteomkin, “Comparative characteristics of magneto-optical materials,” Appl. Opt. 36, 6403–6410 (1997). [CrossRef]
  8. E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004). [CrossRef]
  9. K. Nicklaus, M. Daniels, R. Hohn, and D. Hoffmann, “Optical isolator for unpolarized laser radiation at multi-kilowatt average power,” in Advanced Solid-State Photonics (Optical Society of America, 2006), MB7.
  10. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002). [CrossRef]
  11. E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001). [CrossRef]
  12. E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, and O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002). [CrossRef]
  13. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000). [CrossRef]
  14. N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, and D. H. Reitze, “A 45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30, 1107–1108 (2000). [CrossRef]
  15. A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007). [CrossRef]
  16. D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006). [CrossRef]
  17. D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010). [CrossRef]
  18. I. B. Mukhin and E. A. Khazanov, “Use of thin discs in Faraday isolators for high-average-power lasers,” Quantum Electron. 34, 973–978 (2004). [CrossRef]
  19. R. Yasuhara, M. Yamanaka, T. Norimatsu, Y. Izawa, T. Kawashima, T. Ikegawa, O. Matsumoto, T. Sekine, T. Kurita, H. Kan, and H. Furukawa, “Design and analysis on face-cooled disk Faraday rotator for high average power lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2005), MB43.
  20. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999). [CrossRef]
  21. E. Khazanov, “Faraday isolators for high average power lasers,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (INTECH, 2010).
  22. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinebuilding, 1986).
  23. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15, 11255–11261 (2007). [CrossRef]
  24. A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28, 1409–1415 (2011). [CrossRef]
  25. D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007). [CrossRef]
  26. http://global.kyocera.com/prdct/fc/product/pdf/s_c_sapphire.pdf , “Kyocera Corporation.”
  27. St. Burghartza and B. Schulza, “Thermophysical properties of sapphire, AlN and MgAl2O4 down to 70 K,” J. Nucl. Mat. 212–215, 1065–1068 (1994). [CrossRef]
  28. G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4, 592–609 (1971). [CrossRef]
  29. M. J. Weber, Handbook of Optical Materials (CRC, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited