OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 827–832

Calculation of waveguide modes in linear chains of metallic nanorods

Christos Tserkezis and Nikolaos Stefanou  »View Author Affiliations

JOSA B, Vol. 29, Issue 4, pp. 827-832 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (356 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the calculation of the fundamental plasmon waveguide modes in linear periodic chains of finite silver nanorods, aligned perpendicular to the chain. The results of rigorous full-electrodynamic calculations by the layer-multiple-scattering method are discussed in conjunction with the results of the widely used coupled-dipole model and a critical evaluation of the latter is provided. More specifically, it is shown that both diameter and height of the nanorods must be much smaller than the interparticle distance; otherwise, for relatively long nanorods close to each other, the coupled-dipole model can fail completely to predict the waveguide dispersion diagram. Moreover, the model systematically underestimates the effect of dissipative losses and cannot describe the effect of a supporting substrate, which is always present in realistic cases and induces considerable changes in the waveguide dispersion diagram.

© 2012 Optical Society of America

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(230.7370) Optical devices : Waveguides
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: January 13, 2012
Manuscript Accepted: January 31, 2012
Published: March 30, 2012

Christos Tserkezis and Nikolaos Stefanou, "Calculation of waveguide modes in linear chains of metallic nanorods," J. Opt. Soc. Am. B 29, 827-832 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998). [CrossRef]
  2. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999). [CrossRef]
  3. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65, 193408 (2002). [CrossRef]
  4. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003). [CrossRef]
  5. A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9, 4228–4233 (2009).
  6. C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver spheres and its possible application,” Phys. Rev. E 72, 066606 (2005). [CrossRef]
  7. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics–A route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001). [CrossRef]
  8. F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91, 133107 (2007). [CrossRef]
  9. A. Alù, P. A. Belov, and N. Engheta, “Coupling and guided propagation along parallel chains of plasmonic nanoparticles,” New J. Phys. 13, 033026 (2011). [CrossRef]
  10. M. Guasoni and M. Conforti, “Complex dispersion relation of a double chain of lossy metal nanoparticles,” J. Opt. Soc. Am. B 28, 1019–1025 (2011). [CrossRef]
  11. I. B. Udagedara, I. D. Rukhlenko, and M. Premaratne, “Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: the role of optical gain and chain layout,” Opt. Express 19, 19973–19986 (2011). [CrossRef]
  12. M. Conforti and M. Guasoni, “Dispersive properties of linear chains of lossy metal nanoparticles,” J. Opt. Soc. Am. B 27, 1576–1582 (2010). [CrossRef]
  13. S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: finite-difference time-domain studies of silver cylinders,” Phys. Rev. B 68, 045415 (2003). [CrossRef]
  14. K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Opt. Lett. 32, 973–975 (2007). [CrossRef]
  15. K. H. Fung and C. T. Chan, “A computational study of the optical response of strongly coupled metal nanoparticle chains,” Opt. Commun. 281, 855–864 (2008). [CrossRef]
  16. Y. Hadad and B. Z. Steinberg, “Green’s function theory for infinite and semi-infinite particle chains,” Phys. Rev. B 84, 125402 (2011). [CrossRef]
  17. S. Campione, S. Steshenko, and F. Capolino, “Complex bound and leaky modes in chains of plasmonic nanospheres,” Opt. Express 19, 18345–18363 (2011). [CrossRef]
  18. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000). [CrossRef]
  19. S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004). [CrossRef]
  20. D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Lett. 4, 1561–1565 (2004). [CrossRef]
  21. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004). [CrossRef]
  22. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
  23. A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006). [CrossRef]
  24. A. F. Koenderink, R. deWaele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B 76, 201403(R) (2007). [CrossRef]
  25. A. Alù and N. Engheta, “Guided propagation along quadrupolar chains of plasmonic nanoparticles,” Phys. Rev. B 79, 235412 (2009). [CrossRef]
  26. D. S. Citrin, “Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium,” Opt. Lett. 31, 98–100 (2006). [CrossRef]
  27. I. B. Udagedara, I. D. Rukhlenko, and M. Premaratne, “Complex–ω approach versus complex-k approach in description of gain-assisted surface plasmon-polariton propagation along linear chains of metallic nanospheres,” Phys. Rev. B 83, 115451 (2011). [CrossRef]
  28. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011). [CrossRef]
  29. N. Stefanou and A. Modinos, “Optical properties of thin discontinuous metal films,” J. Phys. Condens. Matter 3, 8149–8157 (1991). [CrossRef]
  30. E. R. Encina and E. A. Coronado, “Plasmonic nanoantennas: angular scattering properties of multipole resonances in noble metal nanorods,” J. Phys. Chem. C 112, 9586–9594 (2008). [CrossRef]
  31. G. Gantzounis, “Plasmon modes in axisymmetric metallic nanoparticles: a group theory analysis,” J. Phys. Chem. C 113, 21560–21565 (2009). [CrossRef]
  32. K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109, 20331–20338 (2005). [CrossRef]
  33. S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99, 123504 (2006). [CrossRef]
  34. B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons on metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C 111, 11516–11527 (2007). [CrossRef]
  35. R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73, 235402 (2006). [CrossRef]
  36. W. Dickson, G. A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties,” Phys. Rev. B 76, 115411 (2007). [CrossRef]
  37. M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology 21, 065301 (2010). [CrossRef]
  38. D. J. Lipomi, M. A. Kats, P. Kim, S. H. Kang, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning,” ACS Nano 4, 4017–4026 (2010). [CrossRef]
  39. S. Habouti, M. Mátéfi-Tempfli, C.-H. Solterbeck, M. Es-Souni, S. Mátéfi-Tempfli, and M. Es-Souni, “Self-standing corrugated Ag and Au-nanorods for plasmonic applications,” J. Mater. Chem. 21, 6269–6273 (2011). [CrossRef]
  40. Y. Liu, J. Fan, Y.-P. Zhao, S. Shanmukh, and R. A. Dluhy, “Angle dependent surface enhanced Raman scattering obtained from an Ag nanorod array substrate,” Appl. Phys. Lett. 89, 173134 (2006). [CrossRef]
  41. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterial for biosensing,” Nat. Mater. 8, 867–871 (2009). [CrossRef]
  42. R. Kullock, W. R. Hendren, A. Hille, S. Grafström, P. R. Evans, R. J. Pollard, R. Atkinson, and L. M. Eng, “Polarization conversion through collective surface plasmons in metallic nanorod arrays,” Opt. Express 16, 21671–21681 (2008). [CrossRef]
  43. S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photon. 2, 438–442 (2008). [CrossRef]
  44. W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77, 233101 (2008). [CrossRef]
  45. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008). [CrossRef]
  46. C. Tserkezis, N. Stefanou, and N. Papanikolaou, “Extraordinary refractive properties of photonic crystals of metallic nanorods,” J. Opt. Soc. Am. B 27, 2620–2627 (2010). [CrossRef]
  47. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic couping regime,” Opt. Express 16, 7460–7470 (2008). [CrossRef]
  48. D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2, 2569–2576 (2008). [CrossRef]
  49. R. Kullock, S. Grafström, P. R. Evans, R. J. Pollard, and L. M. Eng, “Metallic nanorod arrays: negative refraction and optical properties explained by retarded dipolar interactions,” J. Opt. Soc. Am. B 27, 1819–1827 (2010). [CrossRef]
  50. Y.-F. Chau, H.-H. Yeh, C.-Y. Liu, and D. P. Tsai, “The optical properties in a chain waveguide of an array of silver nanoshell with dielectric holes,” Opt. Commun. 283, 3189–3193 (2010). [CrossRef]
  51. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  52. J. Venermo and A. Sihvola, “Dielectric polarizability of circular cylinder,” J. Electrost. 63, 101–117 (2005). [CrossRef]
  53. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  54. L. Lewin, Polylogarithms and Associated Functions (Elsevier, 1981).
  55. http://www.wolfram.com/mathematica/ .
  56. N. Stefanou and A. Modinos, “Scattering of light by a two-dimensional array of spherical particles on a substrate,” J. Phys. Condens. Matter 3, 8135–8148 (1991). [CrossRef]
  57. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998). [CrossRef]
  58. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000). [CrossRef]
  59. G. Gantzounis and N. Stefanou, “Layer-multiple-scattering method for photonic crystals of nonspherical particles,” Phys. Rev. B 73, 035115 (2006). [CrossRef]
  60. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).
  61. G. Gantzounis and N. Stefanou, “Cavity-plasmon waveguides: multiple scattering calculations of dispersion in weakly coupled dielectric nanocavities in a metallic host material,” Phys. Rev. B 74, 085102 (2006). [CrossRef]
  62. N. Stefanou, G. Gantzounis, and C. Tserkezis, “Multiple-scattering calculations for plasmonic nanostructures,” Int. J. Nanotechnol. 6, 137–163 (2009).
  63. C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, “Tailoring plasmons with metallic nanorod arrays,” Phys. Rev. B 80, 125124 (2009). [CrossRef]
  64. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  65. T. Yang and K. B. Crozier, “Dispersion and extinction of surface plasmons in an array of gold nanoparticle chains: influence of the air/glass interface,” Opt. Express 16, 8570–8580 (2008). [CrossRef]
  66. K. H. Fung, R. C. H. Tang, and C. T. Chan, “Analytical properties of the plasmon decay profile in a periodic metal-nanoparticle chain,” Opt. Lett. 36, 2206–2208 (2011). [CrossRef]
  67. R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69, 085407 (2004). [CrossRef]
  68. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714–1716 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited